
TOWARDS DEVELOPING A PERFORMANCE EVALUATOR FOR

COMPONENT BASED SOFTWARE ARCHITECTURES

B.BHARATHI1 G.KULANTHAIVEL2

1Research Scholar, Sathyabama University, Chennai-119.
2Assisstant Professor, NITTTR, Chennai

Abstract:

Component Based Software Engineering is a branch of software engineering, which concentrates in the

separation of concerns based on functionality and developing self-contained units available throughout a

software system. Component Based Development (CBD) facilitates in generating reusable software

components, thereby enabling to generate software products more quickly, efficiently and with desirable

qualities. With the increasing avenues of component based development it would be relevant to generate a

tool, which can predict the performance of the software developed using CBD. The tool generated tries to

evaluate the performance attributes of the software at the design level, thereby reducing the cost of rework

at the later stage of software development. The tool is implementation, domain independent as it used the

UML diagrams for evaluation process.

Keyword: Component Based Software Engineering, Quality attributes, Component Based Development.

1. Introduction

 Large software systems and realtime systems are very complex to develop and maintain. Such systems

should be developed with adequate level of performance abilities. The development of these systems would

require the integration of software analysis and design methods with Software Performance Engineering

(SPE). The evaluation of the software architecture is very important to avoid rework and to reduce cost of

the whole project. The introduction of evaluation early in the project life cycle avoids much of rework and

saves time and resources.

Evaluation of the software architecture is an area on which considerable research is going on. The

evaluation can be a) Scenario based, which includes methods, like ATAM, SAAM, ARID, etc., [4] b)

Experience based c) Performance assessment based. Out of the three methods Performance based methods

of evaluation is the idea of concern in this work. Performance analysis can be done using the software

execution model or the system execution model. The software execution model provides the software’s

execution behaviour in the form of execution graphs. The system execution model uses performance model

notations like queuing network to represent both the hardware and software requirements and

functionalities.

Software Performance Engineering methodology is used to evaluate performance characteristics of

software architecture specified by using UML diagrams. Software architecture is defined by the

recommended practice ANSI/IEEE std. 1471-2000 as the fundamental organization of a system, embodied

in its components, their relationships to each other and the environment, and the principles governing its

design and evolution. The software architecture apart from specifying the structure, components and their

interfaces also specifies the non-functional requirements, which impose constrains on the design and

implementations. Non-functional requirement is a requirement that specifies criteria that can be used to

judge the operation of a system, rather than specific behaviour
[3]

Research in the areas of evaluating a component-based software is still at the primitive stage and this has

initiated the idea of the generation of such a tool. The tool ultimately tries to calculate a set of combination

of both functional and non-functional requirements of the software.

2. Method Description:

Our methodology converts the software model to a performance model and evaluates the performance

model. The software model is the software architecture represented in the form of UML diagrams. As we

are trying to evaluate early during the design we need performance information of the components. The

B.Bharathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 136

scenario of an Application Simulation Model (ASM), is created using the SPT (Schedulability,

Performance and Time specification) profile of UML. Translation of the UML diagrams into different

performance models have been surveyed in [1]. The performance model can be a stochastic process

algebra, Petri net, queuing network, simulation model, etc. Our tool uses the layered queuing network as

the performance model. Though there are number of translation and evaluation methods there is still a lack

of formalization of the whole process and there are yet to be tools generated based on these idealogies. The

ultimate aim of this tool and the paper at large is to formalize the transformation process and the evaluation

process. The main objective is to identify potential issues with a proposed architecture, prior to the

construction phase, to determine its architectural feasibility and to evaluate its ability to meet its quality

requirements. We have developed the tool for component based systems and the whole process is automatic

and does not require human intervention. This is an added feature when compared to tools like CLISSPE

and XTEAM
[2]

 with similar applications require human intervention for part of their execution.

2.1. UML as ADL

UML is defined as the language for visualizing, specifying, constructing and documenting the artifacts of a

software intensive system
[6]

. UML is widely used as an Architecture Description Language (ADL),

because of its extensive vocabulary and its extension mechanisms
[8]

. There are many ways of profiling

UML to represent the runtime information of the system considered. The tool uses the “UML profile for

Schedulability, Performance and Time specification” (SPT)
[7]

, to represent the dynamic behaviour of the

software system.

UML has a set of thirteen diagrams, which are used to represent the structural, behavioral, interactive

features of the software. The user has the liberty to start of with any diagram of his interest. Apart from the

structural diagrams like class, component and deployment diagrams, the user should provide one

interaction diagram. The usecase diagrams provide the various business scenarios. The class and

deployment diagram contribute to the complete description of the Software architecture, but are not

involved in the transformation process. Activity diagrams give the software execution model. The user can

select any one of the interaction diagrams like sequence diagram or collaboration diagram or activity

diagram. The Rational Rose inbuilt tool does the conversion of collaboration diagram into sequence. The

sequence diagrams are later converted to activity diagrams for the process.

2.2.Layered Queuing Network

Layered Queuing Network (LQN) is a canonical form for extended queuing network with layered structure.

The layered structure arises from servers at one level making requests to servers at lower levels as a

consequence of a request from a higher level
 [9]

. In Simple queuing network models only single layer of

customer server relationships can be described, but we consider each component to be a server and so have

multilevel of queues. The queue length and calling population of request are assumed to be infinity. The

arrivals and services at each queue are deterministic. Each processor has a single queue of requests and all

the requests are scheduled to follow FIFO procedure. The layered queuing network is solved

mathematically. The availability of the resources are assumed to be 100% and the downtime of resources

are considered as zero.

B.Bharathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 137

Figure 1. Overview of the tool

2.3.Algorithm:

Input: set of specifications with performance requirements.

Algorithm:

• Determine usecases and performance scenarios

• Draw sequence diagrams to know information of data exchanges between components.

(Collaboration diagram can be converted using design tool)

• Draw activity diagram to know operational work and resource allocation. (state charts can be

detailed to derive activity diagrams)

• Draw component diagram to indentify components (optional)

• Draw deployment diagram to know interconnections between the processing nodes.

• Add performance (SPT)annotational descriptions to diagrams.

• Derive LQN from the activity diagram, using the XMI document generated.

• Provide queue behaviour like scheduling behaviour etc. to nodes.

• Solve LQN using simple mathematical model.

• Derive performance parameters and analyse against requirements.

• The results are ranked against user requirements and applicabilities.

Output: Measures of throughput, distributions of service time, arrival rate, intensity, reusability, variance,

mean delay, processor utilization, queuing delay, component cohesiveness, etc.

 The results can be further utilized for feedback and design improvement process through reverse

engineering.

2.4.Findings and observations:

m: Maximum Service Time

n: Number of Activities

B.Bharathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 138

t: Mean Service Time

t = m / n

m = m + (2 * t) for 1 activity

If ‘m’ milliseconds time required for 1 Activity, then for 1 second find out the number of activities

carried out.

µ: Service Rate (Time of service for a specified time duration)

λ: Arrival Rate

Arrival Rate is always lesser than or equal to Service Rate.

Occupancy = Arrival Rate / Service Rate

a) Maximum Service Time = MAX(TimeTaken)+(Maximum Reusability *

MAX(MeanServiceTime))

b) Service Rate = (1/Maximum Service Time)

c) Activities Per Second = (MAX(TimeTaken)+ Maximum Reusability *

MAX(MeanServiceTime)) * 1000

d) Arrival Rate = MAX(TimeTaken)+(Maximum Reusability*MAX(MeanServiceTime))

e) Maximum Waiting Time = (Maximum Waiting Time)*MAX(MeanServiceTime

f) TimeDifference = MeanServiceTime – Estimated Service Time

g) ExtraTimeUtilized = MeanServiceTime – TimeDifference

h) If (FeasibleCount >= NoOfActivities/2) THEN 'Not Feasible' ELSE 'Feasible'

The types of resources considered are:

• Hardware resource

• Logical resource

• Phases AND Join/Fork

• OR Join/Fork

The total no. of hits to a particular component is calculated to identify component modularity. The total no.

of processor and hardware references depict the respective utilizations. The values are converted to

percentages. Component cohesiveness is also calculated by identifying the object or class involved in the

query.

Traffic Intensity (or Occupancy) :

Mean number of customers in the system:

Total waiting time (including the service time):

The factors that provide feedback:

• No. of Activities

• No. of paths (parallel).

• Mean service time of the activity.

B.Bharathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 139

• Max. total time taken by the path

Fig2: Sample activity diagram

Table 1. Information Table of activity diagram

Table 2. Estimated Service Time for Activity Diagram

No. of Paths 3

No. of Actions 11

No. of Resources

utilized
4

Action

Service

Time

(ms)

Mapping

1 0.5 Phase

2 0.25 Branch

3 0.25 Phase

4 0.45 Logical

5 0.35 Phase

6 0.3 Branch

7 0.15 Phase

8 0.25 Logical

9 0.75 Logical

10 0.8 Hardware

11 0.2 Phase

B.Bharathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 140

Fig 3: snap shot of the tool with details of the software model provided as activity diagrams.

Figure 4: Analysis done using the tool

Figure 5: Rating of components using the tool

s.n

o

Attribute name Calculate

d values

1 Response time 0.35ms

2 Resource

utilization

86%

3 Throughput 26/unit

time

4 Service time 0.2ms

5 Maintainability 73%

6 Reusability 60%

7 Modularity 67%

8 Load 50%

9 Processor 95%

B.Bharathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 141

utilization

10 Schedulability 70%

11 Multiplicity 60%

12 Resource

availability

100%

Table3. list of sample values calculated for one component

Conclusion:

The tool utilizes a simplistic approach to software architecture evaluation and also helps to identify the best

applicable design of the various choices of designs. The methodology used does not manifest on complex

algorithms. It is a simple user-friendly tool, which can be utilized during the design process of a component

based development project. Such development enables the generation of efficient usable components. The

tool can be further extended to analyze and provide feedback by adding an inference engine to it. The

current research has taken a step front in this direction. Customer satisfied components once created can be

better reused for later requirements in projects.

References:

[1]. Balsamo,S, Di Marco.A., Inverardi.P., Simeoni, “Model based performance prediction in software development: a

survey”, IEEE transaction on software engineering, vol 30, pp 295-310, may 2004.

[2]. George Edwards, Chiyoung Seo, Nenad Medvidovic, “Model Interpreter Frameworks: A foundation for the

analysis of Domain-specific software architectures”, Journal of computer science, vol14, pg 1182-1206, 2008

[3]. http://www.wikipedia.org/no-functionalrequirements.html

[4]. Christian Del Rosso, “Continuous evolution through software architecture evaluation: a case study”, journal of

software maintanence and evolution: research and practice, pg 351-383,2006.

[5]. Gordon P.Gu, Dorina C.Petriu, “ From UML to LQN by XML algebra-based model transformations”, WOSP’05,

july 11-14, 2005.

[6]. Grady booch, “Unified Modeling Language- a user’s guide”, Pearsons publications

[7]. Object Management Group: UML Profile for scheduling, performance and Time. Version 1.1, 2005.

[8]. B.Bharathi, D.Sridharan, “UML as an Architecture Description Language”, International Journal of Recent Trends

in Engineering, vol.1, pg230-232,2009, academy publishers.

[9]. B.Bharathi, G.Kulanthaivel, “ A tool for architectural design evaluations using simplistic approach”, International

Journal of Computer applications, special issue on computational sciences – new dimensions & perspectives (4):

pg162-165, 2011.

B.Bharathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 142

