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Abstract 

The algorithm of Minh as in [Minh (1988)] was used to generate variates having a gamma distribution with 
shape parameter a>1 only. In this paper, a method, which is the improvement of the algorithm of Minh is 
introduced for the generation of independent random variables from a gamma distribution with all values of 
shape parameter and is compared with the method of Marsaglia and Tsang. By means of computer simulation, 
for each method and each value of shape parameter, a series of 10.000 gamma variables was generated, and then 
the speed, the randomness and the preservation of the numerical characteristics, namely expected value, 
variance and skewness coefficient are considered. It is found that the speed and the randomness of the two 
methods are the same, however, the preservation of the numerical characteristics of the gamma distribution by 
the proposed method is much better than the method of Marsaglia and Tsang.  

Keywords: Algorithm of Minh; Algorithm of Marsaglia and Tsang; Gamma random variable; Improvement of 
Minh’s algorithm. 

1. Introduction 

Generating gamma random variates is a very important problem in the statistical literature. It is well-known that 
the available algorithms can be divided into two distinct cases.  Case 1: Shape parameter a≤ 1; Case 2: Shape 
parameter a>1. For case 1, the most popular and very simple method proposed by [Ahrens and Dieter (1974)].  
For case 2, by the acceptance-rejection principle [Minh (1988)] proposed the very good algorithm to generate 
the gamma variates, and [Hung and Chien (2013)] used these algorithms to generate the gamma random 
numbers and obtained the very good results in computer simulation of reservoir storage. For both cases, 
[Marsaglia and Tsang (2000)] used the Monty Python method and proposed the algorithm for generating 
gamma variates for all values of shape parameter, and recently this  algorithm was introduced by [Hong 
LiangJie(2012)] as a one of the best algorithms which was used in GSL Library and Matlab “gamrnd”.  

By theoretical and statistical analysis, so many algorithms have been proposed for generating the random 
numbers with the specific type of distribution, in which the speed, the simplicity and the ease to implement on 
the computers were considered, several works considered the randomness of the random numbers generators 
such as in the work of  [Boiroju and Reddy (2012)] but there is no any work evaluates the efficiency of the 
different random numbers algorithms based on the preservation of  the numerical characteristics of the 
distribution. To do this, the computer simulation experiments can be applied. The autocorrelation coefficient of 
the generated random number series is investigated to test the randomness and to evaluate the preservation of 
the numerical characteristics of the distribution based on the mean, variance and the skewness of the series of 
generated data. In this paper, the proposed method which is an improvement of Minh’s algorithm to generate 
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random gamma variables for all values of shape parameter is compared with the algorithm of Marsaglia and 
Tsang. By computer simulation experiments, the series of gamma random numbers are generated by using these 
algorithms, and the speed, the randomness and the preservation of the numerical characteristics of the gamma 
distribution are considered, and, that is the subject of this paper. 

2. Literature Review 

2.1.  The statistical descriptors  

The statistical descriptors of a series of random numbers{X1, X2, … , XN }, namely m,  s2,   g, r are the mean, 
variance, skewness coefficient and the lag-one autocorrelation coefficient, respectively. These statistical 
descriptors are expressed as follow: 
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2.2.  The gamma distribution 

A continuous random variable X is said to have a three-parameter gamma distribution if its density can be 
expressed as 
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Where a>0, b>0, c>0, x≥c and a, b, c are respectively the shape, scale, and location parameters. The gamma 
function is defined by 
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This function satisfies the following recursive formula 

 Γሺܽ  1ሻ ൌ ܽΓሺܽሻ  

and for a= k (a positive integer), we have :  

 Γሺ݇ሻ ൌ ሺ݇ െ 1ሻ! ൌ 1 כ 2 כ … ሺ݇ െ 1ሻ  

The numerical characteristics of the three-parameter gamma distribution are given by the following 
formulas: 

Expected value:               E(X)= ܽb + c 

Variance:                         Var(X) =  ܽb2 

Skewness coefficient:     g=2/√ܽ 

When c = 0  we have the two-parameter gamma distribution, and, when c = 0 and b = 1 we have the one-
parameter gamma distribution. By transformation method, the gamma variables with two parameters or three 
parameters can be converted into the gamma variables with one parameter. For three-parameter variables, the 
transformed variables can be obtained by setting y = (x-c)/b or x = c + by. For two-parameter variables, the 
transformation used is y = x/b or x = by. 

2.3.  Generation of gamma variables 

2.3.1. Minh’s algorithm 

The algorithm works for X  is the gamma variable with one parameter for shape a>1: 

Initialization: 

(1) Set m= a-1, D = √݉ 

(2) If 1< a   2, set D1 = m/2, x1 = 0, x2=D1, xs = -1, f1 = 0, goto (4)  

(3) Set  D1=D-0.5, x2=m-D1, x1=x2-D1, xs=1-m/x1,   ଵ݂ ൌ ∑ െ ln ܷ

ୀଵ  

(4) Set  ଶ݂ ൌ ݁ሺ௫మ/ሻାభ, x4 = m+D,x5 = x4+D,xr = 1 – m/x5,   ସ݂ ൌ ݁ሺ௫ర/ሻି,  ହ݂ ൌ ݁ሺ௫ఱ/ሻିଶ 

         p1 = 2Df4,  p2 = 2D1f2+p1, p3 = f5/xr+p2, p4 = -f1/xs+p3 
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Generation: 

(5) Generate a uniform random number UU(0,1) 

      Set U = Up4 

      If U > p1, goto (7) 

      Set w = U/D – f4 

      If w ≤ 0, deliver X = m+U/f4 

      If w ≤ f5, deliver X = x4+wD/f5 

(6) Generate a uniform random number VU(0,1) 

       Set X = x4+VD, x’ = 2x4-X 

       If w ≥ f4+(f4-1)(X-x4)/(x4-m), deliver X=x’ 

       If w ≤ f4 + (m/x4-1)f4(X-x4), deliver X= x4+VD 

       If w < 2f4-1, goto (11) 

       If ݓ ൏ 2 ସ݂ െ ݁൫
ᇲ/൯ାିᇲ, goto (11); otherwise, deliver X = x’ 

(7)  If U > P2, goto (9) 

       Set w = (U-p1)/D1 – f2 

       If w ≤ 0, deliver X = m-(U-p1)/f2 

       If w ≤ f1, deliver X = x1 + wD1/f1 

(8)  Generate a uniform random number V U(0,1) 

       Set X = x1+VD1, x’ = 2x2 – X 

       If w ≥ f2+(f2-1)(X-x2)/(x2-m), deliver X=x’ 

       If w ≤ f2 + (X-x1)/D1, deliver X= x1+VD1 

       If w < 2f2-1, goto (11) 

       If ݓ ൏ 2 ଶ݂ െ ݁൫
ᇲ/൯ାିᇲ , goto (11); otherwise, deliver X = x’ 

(9)  Generate a uniform random number wU(0,1) 

       If U ≥ p3 , goto (10) 

       Set U = (p3-U)/(p3-p2), X = x5 – ln(U)/xr 

       If w ≤ [xr(x5-X)+1]/U, deliver X = x5 – ln(U)/xr 

       Set w = wf5U, goto (11) 

(10) Set U = (p4-U)/(p4-p3), X = x1-ln(U)/xs 

        If X ≤  0, goto (5) 

        If w ≤ [xs(x1-X)+1]/U, deliver X  

        Set w = wf1U 

(11) If ln(w) > mln(X/m) + m – X , goto (5); otherwise, deliver X = x1-ln(U)/xs . 

Basically, this algorithm requires two uniform random variables to generate a single gamma random 
number with one-parameter gamma distribution, and just one time of initialization to generate a series of gamma 
random numbers. 

2.3.2.  Marsaglia and Tsang’s algorithm 

The algorithm works for X is the gamma variable with one parameter for a≥1: 

(1)  Set d = a –1/3 and c =1/√9݀. 

(2) Generate a standard normal random number ZN(0,1) and a uniform random number UU(0,1) 
independently. 

(3)  If  Z > −1/c and lnU < 1/2Z2  + d – dV + d × lnV, where V = (1+cZ)3, deliver X = d × V; otherwise, go back to 
Step 2. 

The algorithm can be easily extended to the cases where 1>a>0. Generating X′ is the gamma variable with 
one parameter for shape a+1, then deliver X = X′ × ܷଵ/ where UU(0,1). Thus, X is the gamma variable with 
one parameter for shape a. See details in the work of [Marsaglia and Tsang (2000)]. 
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This algorithm requires one uniform random variable and one standard normal random variable to generate 
a single gamma random number for shape a≥1 and one more of uniform random variable for shape 1>a>0. 

To generate a single standard normal random number, the algorithm proposed by [Rao et al.(2011)] is used: 

(1) Generate a uniform random number UU(0,1). 

(2) Deliver ܼ ൌ 
ି୪୬ ሺ

భ
ೆ
ିଵሻ

ଵ.ଶ
 

3. The Proposed Method 

Based on the work of [Marsaglia and Tsang (2000)] the proposed method from an improvement of Minh’s 
algorithm is as follows:  

(1) If a>1 generate X by Minh’s algorithm with shape a; Deliver X . 

(2) If 1≥a>0 generate X′ by Minh’s algorithm with shape a+1; Deliver X = X′ × ܷଵ/ where UU(0,1). 

This method is applied for any value of shape parameter. 

4. Computer simulation  

To generate the series of  the gamma random variables,  the proposed method and the method of Marsaglia and 
Tsang were used. All the  programs were coded in the C language for computer simulation experiments and 
tested on the computer with Intel(R) Atom CPU N570- 32 bit. 

For each value of the skewness coefficient of the gamma distribution, a moderate sample of 10,000 gamma 
random numbers was generated on the computer using the algorithms of the two methods. The speed, the 
randomness and the statistical descriptors, namely mean value, variance, skewness coefficient and lag-one 
autocorrelation coefficient were investigated. In these experiments, the  value of skewness coefficient of the 
gamma distribution was in the range [0.1, 500]. The time consuming was recorded, the statistical descriptors of 
the series of generated data were computed by using Eqs. (1) – (3) and used to consider  the preservation of the 
numerical characteristics of the gamma distribution, and the lag-one autocorrelation coefficient is computed by 
using Eq. (4) and used to test  the randomness. Table 1 indicates the speed and the randomness, and Tables 2-4 
indicate the preservation of the numerical characteristics of the distribution. The results are as follows: 

Table 1.  The Autocorrelation coefficients of 10,000 generated gamma variables and average generation times (in Milliseconds). 

Shape 
a 

a) Average Marginal Time b) Autocorrelation Coefficient 

Proposed 
method 

Marsaglia and 
Tsang’s 
method 

Proposed 
method 

Marsaglia and 
Tsang’s 
method 

0.1 0.55 0.57 0.015 0.004 
0.3 0.50 0.61 0.008 0.008 
0.5 0.55 0.55 0.001 -0.004 
0.7 0.49 0.52 0.000 -0.013 
0.9 0.53 0.55 -0.012 -0.013 
1.0 0.55 0.55 0.013 0.003 
1.5 0.25 0.28 -0.003 -0.011 
2.0 0.27 0.34 -0.003 -0.028 
2.5 0.29 0.33 0.006 -0.045 
3.0 0.27 0.29 0.006 -0.034 
5.0 0.27 0.28 -0.005 -0.003 

10.0 0.29 0.30 -0.019 -0.015 
15.0 0.33 0.30 -0.004 -0.018 
30.0 0.33 0.33 -0.004 -0.002 
50.0 0,32 0.31 -0.001 0.020 

100.0 0.32 0.29 -0.014 -0.003 
300.0 0.33 0.31 0.008 0.011 
500.0 0.33 0.33 0.013 0.019 
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Table 2.  Mean values of 10,000 generated gamma variables. 

Shape 
a 

a) Proposed method b) Marsaglia and Tsang’s method 
Generated 

data 
Relative error 
in percentage 

Generated 
data 

Relative error 
in percentage 

0.1 0.099 -0.78 0.114 14.32 
0.3 0.296 -1.27 0.343 14.38 
0.5 0.498 -0.41 0.564 12.79 
0.7 0.693 -1.04 0.778 11.14 
0.9 0.914 1.55 0.980 8.94 
1.0 0.984 -1.60 1.350 35.03 
1.5 1.508 0.55 1.838 22.53 
2.0 2.004 0.19 2.324 16.20 
2.5 2,506 0.25 2.820 12.81 
3.0 3.034 1.12 3.325 10.82 
5.0 4.967 -0.68 5.333 6.67 

10.0 10.018 0.18 10.391 3.91 
15.0 14.911 -0.59 15.314 2.09 
30.0 30.026 0.09 30.307 1.02 
50.0 50.114 0.23 50.138 0.28 

100.0 100.130 0.13 100.287 0.29 
300.0 300.020 0.01 300.183 0.06 
500.0 499.874 -0.03 500.223 0.05 

Table 3.  Variances of 10,000 generated gamma variables. 

Shape 
a 

a) Proposed method b) Marsaglia and Tsang’s method 
Generated 

data 
Relative error 
in percentage 

Generated 
data 

Relative error 
in percentage 

0.1 0.098 -1.79 0.094 -6.44 
0.3 0.273 -8.03 0.270 -10.08 
0.5 0.483 -3.42 0.416 -16.71 
0.7 0.668 -4.53 0.562 -19.74 
0.9 0.937 4.12 0.684 -23.99 
1.0 0.961 -3.86 1.351 35.06 
1.5 1.531 2.04 1.874 25.02 
2.0 1.983 -0.84 2.322 16.09 
2.5 2.511 0.44 2.932 17.29 
3.0 3.132 4.40 3.295 9.83 
5.0 4.922 -1.56 5.213 4.25 

10.0 10.245 2.45 10.491 4.91 
15.0 14.934 -0.44 15.399 2.66 
30.0 29.272 -2.43 30.630 2.10 
50.0 49.548 -0.90 49.924 -0.15 

100.0 98.376 -1.62 98.790 -1.21 
300.0 299.550 -0.15 289.798 -3.40 
500.0 499.916 -0.02 507.709 1.54 
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Table 4.  Skewness coefficients of 10,000 generated gamma variables. 

Shape 
a 

Skewness 
coefficients 
of gamma 

distribution 

a) Proposed method b) Marsaglia and Tsang’s 
method 

Generated 
data 

Relative 
error in 

percentage 

Generated 
data 

Relative 
error in 

percentage 

0.1 6.325 6.752 6.75 4.524 -28.47 

0.3 3.651 3.530 -3.34 2.429 -33.47 

0.5 2.828 2.898 2.45 1.912 -32.40 

0.7 2.390 2.422 1.30 1.653 -30.87 

0.9 2.108 2.048 -2.86 1.393 -33.93 

1.0 2.000 2.046 2.28 1.698 -15.08 

1.5 1.633 1.704 4.33 1.538 -5.81 

2.0 1.414 1.445 2.20 1.292 -8.63 

2.5 1.265 1.306 3.25 1.315 3.94 

3.0 1.155 1.260 9.14 1.028 -10.96 

5.0 0.894 0.838 -6.37 0.780 -12.79 

10.0 0.632 0.637 0.68 0.606 -4.131 

15.0 0.516 0.515 -0.31 0.490 -5.143 

30.0 0.365 0.335 -8.16 0.332 -9.013 

50.0 0.283 0.255 -9.85 0.248 -12.25 

100.0 0.200 0.193 -3.43 0.163 -18.41 

300.0 0.115 0.133 14.88 0.107 -7.27 

500.0 0.089 0.117 30.48 0.071 -20.40 

5. Conclusion 

 The following conclusions are drawn from this study: 

 The algorithm proposed by Minh is used for the case of the value of shape parameter a>1 only, whereas, the 
proposed method from the improvement of Minh’s algorithm will be applied for any value of shape 
parameter of the gamma distribution. 

 To evaluate the efficiency of an algorithm to generate the random numbers, the randomness and the 
preservation of the numerical characteristics, namely the expectation, variance and skewness coefficient of 
the distribution are considered also.  

 As the results indicate in Table 1(a), the time consuming on the computer to generate the series of gamma 
random numbers by the proposed method and the method of Marsaglia and Tsang are the same and the 
results in Table 1(b) showed that the absolute values of the autocorrelations of the series of gamma random 
numbers generated are significantly in the range of zero to 0.05. This proves that the generated samples are 
the random samples. 

 From the Tables 2 - 4, it is observed that the values of the relative errors in percentage of the mean, 
variance and skewness coefficient of the series data obtained by using the proposed method are very small 
for almost the values of shape parameter. Especially, for the cases of shape a<3, it is found that the 
numerical characteristics of the gamma distribution can be preserved very well by the proposed method, 
much better than those by the method of Marsaglia and Tsang. 
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