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Abstract - In this paper, we have used two powerful numerical and analytical methods for solving type of 
partial differential equations called reaction diffusion system in one dimension. In the numerical method, 
we use implicit method for discretizing the nonlinear reaction tern and implicit method for linear 
diffusion term. The Tanh method is used to find the analytical solution for this model. The traveling wave 
solutions are found for this system using the above methods and for generalized logistic growth with 
nonlinearity of second order. Comparison of two methods  show a good agreement. 
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1. Introduction: 

Today, the application of Reaction-diffusion systems have been found in many ranges of science, chemical and 
biological phenomena to medicine (physiology, diseases, etc.), economics, weather prediction, astrophysics and 
etc7,3. There are two main physical aspects in this kind of problems, first aspect is an interaction between two 
species (or reactions) coupled with a means of transport of their products1.  One of the essential applications of 
this model that has been studied widely is heat transfer2, for example, a study on understanding the candle flame 
and if there is any similarity with the mechanism of respiration of biological organisms1. Also, this model has 
applications in nerve system2. Traveling waves are one of the interest topics and the applications that attract the 
researcher in their study of reaction diffusion model5.   In this paper, we study the reaction-diffusion system: 
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Where ܦ௨, ௪  are diffusion coefficients, nu11ܦ    and mw11   are the generalized logistic growth, ߙ and ߚ 

are positive constants9. We will take ݊ and ݉ as a positive integer focusing on the case ݊ ൌ ݉ ൌ 2, as we will 
see that how the problem becomes difficult algebraically to solve when we solve it using both Tanh.  When 
n=m=1, the system (1) return to a simple Lotka-Volterra model9. In this paper we focus on solving this model 
using numerical and analytical methods namely, semi-implicit finite difference10 as a numerical methods and 
Tanh method4,6,8.11 which can use specifically to find the traveling wave solutions for model similar to (1). 

2. Finite difference method 

Firstly, we discretize  (1) using a semi-implicit method as  follows: 
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Those equations simplify give us: 
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  respectively . The domain of solution 0<x< l is divided to N discrete 

equally spaced points ,)( xlixx i  where Ni ,.......,4,3,2,1  and l  is the length of domain. The 

initial conditions are )()0,( 0 xuxu  , )(),( 0 xwoxw  . The boundary conditions are no flux or Neumann 

boundary condition, 0 xx wu
 
at ,,0 lx  which are imposed using a three point formula 
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From discretization we get a system of algebraic equations which can be written in the form: 
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and                                                               
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Then, we solve the algebraic system using MATLAB program. For specific values of the parameters and for the 
initial conditions: 
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We get nice figures show the traveling wave solutions for this system focusing on the effect of ݊ and ݉ on the 
propagating of ݑ and ݓ. In other words when we change the degree of the generalized logistic growth in the 
reaction term, we investigate how the wave of   ݑ and ݓ are reacts. 
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Figure 1: Plot of the numerical solution of (1.1) when ݊ ൌ 1 , ݉ ൌ 2,  ݊ ൌ 2 , ݉ ൌ 3,    ݊ ൌ 4 , ݉ ൌ 2,  ݊ ൌ 3 , ݉ ൌ 1,  ݊ ൌ 3 , ݉ ൌ

4  and ܦ௨ ൌ 2.5 , ௪ܦ ൌ 0.5 , ଵߙ ൌ 2, ଶߙ ൌ 0.5, ଵߚ ൌ 1, ଶߚ  ൌ 2.8. 

We notice that the difference degrees of the term of logistic growth don’t make a large effect on the propagation 
and the shape of the traveling wave solution although there are  slightly a difference between these cases.  

 
Figure 2: Plot of the numerical solution of eq. (1.1)   when ݊ ൌ 1,2,3,4 , ݉ ൌ 1,   and ܦ௨ ൌ 1, ௪ܦ ൌ 1 , ଵߙ ൌ 1, ଶߙ ൌ 0.7, ଵߚ ൌ 1, ଶߚ  ൌ

1.6. 
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Figure 3: Plot of the numerical solution of (1.1) when ݊ ൌ 1,2,3,4 , ݉ ൌ 1,   and ܦ௨ ൌ ௪ܦ,2 ൌ 1 , ଵߙ ൌ 3, ଶߙ ൌ 5, ଵߚ ൌ 4, ଶߚ  ൌ 7. 

3. Tanh method: 
Now, we l take the general reaction –diffusion system (1.1) and study its traveling wave solutions using 

Tanh method when ݊ =m=2. First, we transform (1.1) using  

and  )4).......((),( Wtxw  , 

where,                               )( txk  
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We introduce )tanh(Y and replace eq. (6) by 

)(),( Utxu 
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Now, to determine the parameter N and  M we balance the linear term of highest order  with highest order of 

nonlinear terms, in (7). The balance of U  with 3U  obtains N+2 = 3N, and therefore N = 1 where 

    [
2

2 )(
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U  ] . Similar balancing of W  with 3W   gives   M + 2= 3M, then M=1,   where [

2

2 )(

dY

YGd
W  ] .  

Now,  the Tanh method admits the use of the finite expansion for :  
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where, 0,0 11  ba .  Substituting (8) in (7) we get, 
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then  eq.(9) becomes, 
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and this leads to: 
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Similarly eq.(10) becomes: 
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and this leads to: 

 

 

The remaining constants are easily found through simple algebra such that  
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Finally, we find the solution in the form  

)(tanh),( 10 txkaatxu   

)(tanh),( 10 txkbbtxw   

The traveling wave solutions of u(x,t) and w(x,t) can be plot using by MATLAB as shown in figure 4. 
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Figure 4:  plot the numerical solution of the reaction–diffusion system (1.1) by the Tanh method when:

70,355.0,1,1,7.0,1,5.0,6.0 2121  tkDDbbaa wu .
 

Now, the comparison of the solution of the reaction diffusion system (1.1)  using the finite difference method 
and the Tanh method when (m=n=2) shows a good  agreement between them as shown in the figure (5). 

 
Figure 5 : plot the comparison for eq. (1) between  Tanh method and  finite difference method when ( n=2 , m=2) and 

70,355.0,1,1,7.0,1,5.0,6.0 2121  tkDDbbaa wu  
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4. Conclusion 

In this paper, we study a reaction diffusion system (1.1) with nonlinear and generalized logistic growth. 
Traveling wave solutions for this model are found using finite difference and Tanh methods. The focus on the 
nonlinearity of generalized logistic growth was in the second order, where the first order will return the system 
to a Lotka-Volterra model. Both numerical and analytical methods are sufficient to find the traveling wave 
solution for this model.  
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