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Abstract 

DNA barcoding (a technique that uses short DNA sequences) has become fast, economic and 
accurate method for discovering and identifying organisms of the three main kingdoms of eukaryotes. In 
plants, few coding and non coding regions of chloroplast genomes have been tested for their ability to 
identify species while other regions of genome are still left to be explored for their suitability as DNA 
barcodes. The present study is about identification of potential DNA barcodes and assessing their potential 
to discriminate 133 plant species belonging to family Solanaceae from chloroplast DNA (cpDNA) sequences 
using different machine learning classification algorithms in WEKA and distance based method in 
SPIDER. Thirty three hyper-variable regions were identified based on nucleotide diversity (π) using sliding 
window analysis of aligned file of these species. These regions along with well established markers (matK 
and rbcL) were assessed for their discriminating potential at genus level. Sequence richness regime was 
followed for six hyper-variable regions ‘ycf1’, ‘cemA, cemA-petA’, ‘rps12-clpP, clpP / rps12-psbB’, ‘petA, 
petA-psbJ, psbJ, psbJ-psbL’, ‘trnL-trnF, trnF, trnF-ndhJ’ and ‘ndhF, ndhF-rpl32, rpl32, rpl32-trnL’ 
using BLASTN along with matK and rbcL and were tested for their discrimination potential at genus and 
species levels. Distance based method SPIDER and machine learning algorithm SMO performed best when 
compared with other classification methods. It was observed from the study that with increase in number 
of sequences from particular species, there is increase in percentage correct identification rates. All hyper-
variable regions were able to achieve maximum percentage of correct identification rate (100%) at genus 
level. However region ‘ndhF, ndhF-rpl32, rpl32, rpl32-trnL’ was able to achieve highest discrimination 
rate of 69% at species level which was even better than matK and rbcL. The low identification rates at 
species level as compared to genus level were attributed to ambiguity within species for these regions. This 
study will provide valuable resource for development of DNA barcodes for Solanaceae family.  
Keywords: DNA barcodes; Solanaceae; Machine learning algorithms; SPIDER 

1. Introduction 

DNA Barcoding is a technique used for species identification with the help of short gene sequences from 
the standardized region of the genome [Savolainen et al. (2005)]. The short DNA sequence or gene sequence 
which can identify a species is called as DNA barcode.  An ideal barcode should have length of 700 bp or less, 
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simple to sequence and exhibit significant species level genetic variation [Kress et al. (2005)]. The traditional 
species identification techniques rely on morphological characters. However, these methods are time consuming 
and costly. In addition, the traditional methods often fail to correctly identify closely related species [Pires and 
Marinoni (2010)]. DNA barcoding can provide fast, low cost and reliable method for discovering new species and 
identification of existing ones [Hebert et al. (2003b)]. 

DNA barcoding method has been applied for identification of three traditional kingdoms of multicellular 
eukaryotic life forms like animals, plants and fungi.  In animal kingdom, mitochondrial cytochrome c oxidase 
subunit 1 (COI) gene enabled the discrimination of closely allied species and can be used as DNA barcode [Hebert 
et al. (2003a)]. In Fungi, nuclear ribosomal Internal Transcribed Spacer (ITS) Region can be used as a DNA 
barcode marker [Schoch et al. (2012)]. However in plants, finding a robust and effective barcode is difficult as no 
single locus is sufficient to discriminate among different species [Hollingsworth (2011)]. Several combinations 
of coding and intergenic non-coding regions have been identified as DNA Barcodes at family/genus level. These 
regions include ITS2 and psbA-trnH for Rutaceae [Luo et al. (2010)]; atpF-atpH for Lemnaceae [Wang et al. 
(2010)]; ITS2 for Asteraceae [Gao  et al. (2010)], Rosaceae [Pang et al. (2011)], Uncaria (Rubiaceae) [Zhang et 
al. (2015)] and Physalis (Solanaceae) [Feng et al. (2016)]; combination of ITS and trnH-psbA for Parnassia 
(Celastraceae) [Yang et al. (2012)],  Ficus (Moraceae) [Li et al. (2012)] and Apiaceae [Liu et al. (2014)]; 
combination of matK and trnH-psbA for Lamium (Lamiaceae) [Krawczyk et al. (2014)]; combination of atpF-
atpH,  psbK-psbI and trnH-psbA for Orchidaceae [Kim et al. (2014)]; trnH-psbA and ITS region for flowering 
plants [Kress et al. (2005)]. In addition to this, CBOL Plant Working Group et al. (2009) have proposed rbcL and 
matK as standard DNA barcoding regions for land plants. 

 The DNA barcoding experiments have been confined to only a few specific coding or non-coding 
regions while many other regions of DNA must be explored to find their suitability as potential DNA barcodes. 
Although DNA barcoding experimental studies have been simplified over the years, but still these are expensive 
and require lot of labour for processing large number of samples [de Kerdrel et al. (2020)]. With the availability 
of complete chloroplast genome sequences of large number of plant species, it is now possible to search whole 
chloroplast genomes of a particular family for identification of hyper-variable regions which could act as potential 
DNA barcodes. 

Solanaceae family is one of the major groups of angiosperms with more than 2500 plant species 
belonging to 100 genera [Rosario et al. (2019)]. Many members of this family have a great agricultural and 
economical importance. This family is yet to be explored for development of DNA barcodes at family level. In 
the present study, we have applied soft computing based techniques for identification of hyper-variable regions 
from all available complete chloroplast genome sequences and to assess them as potential DNA barcodes for 
identification of various members of Solanaceae family. This study will provide the lead for confirmation of these 
regions to be used as potential DNA barcodes. To the best of our knowledge, this is perhaps the first study in 
which an attempt has been made to find potential DNA barcodes for plant species belonging to Solanaceae family 
using in silico methods. The aims of current study are: - (1) In silico identification of hyper-variable regions which 
could act as potential barcodes for discriminating plant species at genus as well species levels for Solanaceae 
family. (2) Assessment of discriminating potential of selected hyper-variable regions using distance based method 
as well as machine learning algorithms. (3) Comparison of discriminative potential of the selected hyper-variable 
regions with two commonly used barcoding regions i.e. matK and rbcL as recommended by CBOL. 

2. Methods 

2.1. Sequence downloading and alignment 

Complete chloroplast genome sequences of 133 plant species belonging to 19 genera of Solanaceae 
family were downloaded in FASTA format from CpGDB (http://www.gndu.ac.in/CpGDB/) database [Singh et 
al. (2020)] (Supplementary Table 1). Above sequences were aligned with MAFFT (Multiple Alignment using 
Fast Fourier Transform) [Katoh and Standley (2013)] online web server (https://mafft.cbrc.jp/alignment/server/) 
using the default parameters. Fig. 1 shows the workflow adopted for identification and validation of hyper-variable 
regions for development of potential DNA barcodes to identify plant species belonging to Solanaceae family.   

2.2. Identification of hyper-variable regions 

Identification of hyper-variable regions of the chloroplast genomes can lead to development of DNA 
barcodes to discriminate plant species which was done in two phases in the present study. In the first phase, a 
snapshot of overall variability in the aligned genome sequences was obtained using in house written PERL script 
which calculates the variable, singleton and parsimony informative sites. A variable site is a position in the 
alignment which contains at least two types of nucleotides.  Some of the variable sites can be singleton or 
parsimony-informative sites (https://www.megasoftware.net/web_help_7/helpfile.htm) [Kumar et al. (2016)]. A 
singleton site in the alignment contains at least two types of nucleotides (or amino acids) with, at most, one 
occurring multiple times. A site is parsimony-informative if it contains at least two types of nucleotides (or amino 
acids), and at least two of them occur with a minimum frequency of two.  

e-ISSN : 0976-5166 
p-ISSN : 2231-3850 Bhupinder Pal Singh et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203126 Vol. 12 No. 3 May-Jun 2021 642



In the second phase, the aligned file was converted to MEGA format using script written in PERL 
language. The converted file in MEGA format was used to perform sliding window analysis using DnaSP ver 
5.10 with window length as 600 bp and step size as 200 bp [Librado and Rozas (2009)]. In order to have uniform 
number of net nucleotides in all the windows, sites with alignment gaps are not considered. Nucleotide diversity 
(π) i.e. average number of nucleotide differences per site for each window was computed. Windows having π 
greater than mean+2SD were considered as hyper-variable regions [Bi et al. (2018)]. A program was written using 
vb.net to find corresponding genic/intergenic locations of these regions from the annotations available in their 
GenBank files and stored in the SQL server 2012 database. The actual locations of the hyper-variable regions 
corresponding to each gene in the alignment were computed using complete window as well as its mid-point of 
the window. This was done to double check the location of the regions which sometimes is ambiguous due to 
incomplete annotation of genes and alternate gene names. In addition, regions corresponding to the matK and 
rbcL genes, the well established DNA barcodes for plant species were also included as a positive control. 

2.3. Preparation of datasets and data cleaning 

The sequences of all hyper-variable regions along with matK and rbcL genes were extracted using 
program written in vb.net for those genera which have representation of three or more species (list of genera along 
with number of species is given as Supplementary Table 2). This collection of sequences was used to create two 
distinct datasets with one dataset consisting of minimum 3 sequences from each genus and the second dataset 
consisting of minimum of 6 sequences from each genus. The sequences not fulfilling above criteria were filtered 
out. The datasets thus obtained were aligned using Clustal Omega command line version 1.2.2 
(http://www.clustal.org/omega/). The alignment generated was also used to compute variable, singleton and 
parsimony informative sites using PERL script. These datasets were used for genus level identification as each 
species in the dataset was represented by only one sequence in the dataset. 

In order to validate hyper-variable regions in terms of their potential to be used as DNA barcoding regions 
at species level using machine learning approaches, more than one sequence of the same region from same species 
are required. Therefore a sequence richness regime was followed using web based BLASTN 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to find homologous sequences related to same species for each region. 
Before proceeding for sequence richness regime, the regions falling in the same genic/intergenic location and 
overlapping regions were filtered out based on the maximum nucleotide diversity. For each selected hyper-
variable region, the sequence with shortest length i.e. the sequence with least gaps in the aligned window among 
all the 133 species was selected. Apart from the selected hyper-variable regions, two more regions, matK and 
rbcL genes were used as control.  

The selected sequences were used one by one as query sequence in the web based nucleotide blast 
program. Restricted search was performed in nucleotide collection database by using the subset “Solanaceae 
(taxid:4070)” in organism field. The other parameters were set to default values except maximum target sequences 

  
Fig. 1.  Complete workflow to identify and assess potential DNA barcodes for plant species belonging to Solanaceae family 
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as 5000. The resulted blast hits were filtered based on 90% or more query coverage and imported to SQL server 
2012 database. Also complete cpDNA sequences of resultant accessions were downloaded and stored in the 
database. A program was written in vb.net to extract matched sequences from the database based on starting and 
ending position of matching record. The species which have at least two or more accessions were considered for 
further analysis. Separate dataset files i.e. files with minimum 2, 3, 4 and 5 sequences from same species were 
prepared in FASTA format to perform analysis at genus as well as species levels for each region. This was done 
to further evaluate the effect of number of sequences of a particular species on the efficiency of the barcoding 
region. 

2.4. Validation of hyper-variable regions 

Identification success rate of different hyper-variable regions was calculated both at genus and species 
levels using traditional distance based method as well as supervised machine learning algorithms.  

2.4.1. Distance based analysis using SPIDER 

SPecies IDentity and Evolution in R (SPIDER) is a package which is being used for DNA barcoding 
studies based on distance based analysis [Brown et al. (2012)]. A script was written in R (https://www.r-
project.org/) language to evaluate sequence identification success using ‘nearNeighbour’ and ‘bestCloseMatch’ 
functions for various datasets at genus and species levels. These functions were used to test the barcoding 
efficiency of each region. To use these functions, all sequences in the dataset must be identified before analysis. 
During analysis, each sequence, one by one, was considered unidentified and used as query sequence. Remaining 
sequences in the dataset were used to identify the query sequence based on distance. The function ‘nearNeighbour’ 
returns true if the closest individual matches with the species of query sequence otherwise returns false. The 
function ‘bestCloseMatch’ returns the closest individual within given threshold. If no individual found within 
given threshold then it returns ‘no identification’ whereas if more than one individual is found then it returns 
‘ambiguous’.  

2.4.2. Machine learning based analysis using WEKA 

Apart from distance based analysis, machine learning algorithms were also used to test the efficiency of 
DNA barcoding regions for identification of plant species [Weitschek et al. (2014); Hartvig et al. (2015)]. DNA 
barcoding was considered as a classification problem and analysis was performed using Waikato Environment for 
Knowledge Analysis (WEKA) classifier [Hall et al. (2009)].  Efficiency of each region was tested using different 
supervised machine learning algorithms like Decision Tree based C4.5 (J48) [Salzberg (1994)], Function based 
Support Vector Machine using Sequential Minimal Optimization (SMO) [Platt (1999)], Naïve Bayes classifier 
[John and Langley (1995)] and propositional rule based learner RIPPER (Jrip) [Cohen (1995)].  

J48 is a supervised classifier and is an open source java implementation of C4.5 decision tree algorithm 
in WEKA. Decision tree algorithm builds a tree like structure based on various attributes. The decision tree is 
human readable classification model which consists of set of logic rules based on nucleotide positions in the 
sequence. SMO is Support Vector Machine supervised learning algorithm which is implemented in WEKA 
classifier. It converts the input dataset into multi dimensional vectors and defines optimal hyperplane which 
separates different output classes. However there is no human readable model provided with this algorithm.  

Naïve Bayes is a Bayesian-based classifier which is implemented in WEKA and is often used when a 
large dataset is available. In this algorithm, prior probabilities are calculated for each class from the input dataset 
and posterior probabilities of query sequence are calculated for each class and prediction is made based on the 
highest probability. This algorithm also does not provide a readable model. Jrip is a WEKA classifier which 
implements propositional rule based Repeated Incremental Pruning to produce Error Reduction (RIPPER). This 
algorithm first generates initial set of rules for each class and then optimizes the rule set k times and provides 
classification model which is composed of logic rules for each class. This method can have advantage in DNA 
barcoding as the set of rules for each species can be applied manually for identification. 

To run machine learning algorithms, all dataset files in FASTA format were converted to Attribute-
Relation File Format (ARFF) using FASTA to WEKA converter [Weitschek et al. (2014)]. WEKA experimenter 
was set up to run four machine learning algorithms on each dataset at genus and species levels. The percentage 
identification was evaluated using 10 fold cross-validation and each experiment was repeated 10 times. The final 
percentage identification for each dataset was taken as average of all repetitions.  
 

3. Results and Discussion 

The alignment of 133 complete chloroplast genome sequences with length ranging from 154,289 bp to 
157,390 bp was analyzed using the PERL script. The information obtained from this analysis revealed that the 
aligned length of 173,636 bp harbours 21498 variable, 9721 singleton and 11602 parsimony informative sites.  
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3.1. Identification of hyper-variable regions 

 Nucleotide diversity (π) was used to find the hyper-variable regions in the solanaceous chloroplast 
genomes. The value of π was computed using sliding window analysis (window size: 600 bp and step size: 200 
bp) for different regions. Fig. 2 shows the variation of π across the complete chloroplast genome sequences of 133 
species of Solanaceae family. The value of π ranges from 0.00005 to 0.06278 with average value as 0.01148 for 
697 window regions.  

Out of total 697 window regions in the analysis, 33 were having π greater than mean+2SD (i.e. 0.03121) 
and therefore considered as hyper-variable regions [Bi et al. (2018)]. The actual locations of these regions in the 
chloroplast genome of respective species were computed to pinpoint genic/intergenic regions to which they belong 
(Supplementary Table 3). From the location of these regions in the genome, it was found that some of the regions 
are falling in the same genic/intergenic location. In these cases, region with maximum nucleotide diversity were 

selected for further analysis at species level (Fig. 2).  
It was seen from the Fig. 2 that ycf1 is the most variable region which was also considered as the most 

promising DNA barcode in another study by Dong et al. (2015) for land plants due to its variability. The second 
most variable region observed in the present study i.e. cemA was also reported in six species of Pyropia 
(Bangiaceae) genus based on nucleotide diversity [Choi et al. (2019)]. In another study based on sliding window 
analysis of whole chloroplast genomes belonging to nine species of Diospyros (Ebenaceae) genus, ycf1, ndhF and 
ndhF-rpl32-trnL were among the eight hyper-variable regions [Li et al. (2018)]. Six highly variable regions 
rps15/ycf1, ndhF/rpl32, pasbE-petL, petA/psbJ, trnL/trnF and trnK/rps16 were reported in 72 species of 
Brassicaceae family based on nucleotide diversity using sliding window analysis [de Santana Lopes et al. (2018)]. 
Ten highly variable regions ycf1a, ycf1b, psbM-trnD, rpl31-trnL, rpl32-trnL, rps4-trnT-trnL, ycf4-cemA, petA-
psbJ, rps11-rpl36-rps8 and trnK-rps16 were reported in Fritillaria (Liliaceae) genus based on nucleotide diversity 
[Bi et al. (2018)]. It can be seen that hyper-variable regions which were reported in the earlier studies on few 
genera/families are common to hyper-variable regions observed in the present study on Solanaceae family. 

In Solanaceae family, few studies have been conducted at genus level for development of DNA barcode 
e.g. ITS2 region of nuclear ribosomal DNA was found to be potential DNA barcode for Physalis (Solanaceae) 
[Feng et al. (2016)]. However to the best of our knowledge, this is the first study in which hyper-variable regions 
based on chloroplast genome sequences are reported in solanaceous species at family level. These regions are 
required to be validated as potential DNA barcodes for identification of solanaceous species.  

 
 
 

 

Fig. 2. Variation of nucleotide diversity (π) across complete chloroplast genome sequences of 133 species of Solanaceae family calculated 
using sliding window analysis (window length: 600 bp, step size: 200 bp). Y-axes: nucleotide diversity (π) of each window; X-axes: 

position of the midpoint of window in the aligned file.  
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3.2. Validation of hyper-variable regions 

3.2.1. Validation at genus level 

Out of 19 genera, 7 genera have been represented by three or more species (Supplementary Table 2). Out 
of these 7 genera, three genera viz. Physalis, Lycium and Dunalia have representation of 3 plant species each 
while other four genera viz. Solanum, Capsicum, Iochroma and Nicotiana have representation of 6 or more 
species, therefore two sets of dataset files were prepared for all the 33 hyper-variable regions along with two 
standard barcoding regions matK and rbcL genes as recommended by CBOL for land plants. The first set consists 
of 121 plant species from 7 genera with at least three representatives of each genus. The second set consists of 
112 plant species from 4 genera with at least six representatives of each genus. To compute variable, singleton 
and parsimony informative sites and to find percentage of correct species identification using distance based 
analysis in SPIDER and Machine learning algorithms in WEKA, each dataset file was stored in three formats and 
aligned separately using Clustal Omega command line version 1.2.2. A PERL script was executed on each aligned 
dataset file to compute variable, singleton and parsimony informative sites and the results are shown in Table 1. 
Each parameter contains two sub-columns, first column shows results from first set of files in which each dataset 
file consists of minimum 3 plant species for each genus and second column shows results from second set of files 
in which each dataset file consists of minimum 6 plant species for each genus. 

Table 1. Characteristics of 33 hyper-variable window regions along with matK and rbcL  

S. No. Position of hyper-variable 
windows in MSA 

(Nucleotide Diversity) 
No. of Sequences/ 

Genera 
Alignment 

Length 
Variable Sites Singleton Sites 

Parsimony 
Informative Sites

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 
1.  145095-145812 (0.06278) 121/7 112/4 692 668 216 202 46 48 170 154 
2.  145298-146091 (0.06081) 121/7 112/4 762 741 249 233 64 65 185 168 
3.  145519-146321 (0.05806) 121/7 112/4 759 759 254 241 75 76 179 165 
4.  73724-74394 (0.05733) 121/7 112/4 633 633 127 126 33 34 94 92 
5.  73924-74624 (0.05268) 121/7 112/4 648 648 139 135 33 35 106 100 
6.  143895-144679 (0.04555) 121/7 112/4 768 750 236 205 89 74 147 131 
7.  144895-145518 (0.04525) 121/7 112/4 625 600 148 136 40 44 108 92 
8.  144178-144894 (0.04479) 121/7 112/4 688 679 209 191 57 59 152 132 
9.  145813-146527 (0.04418) 121/7 112/4 689 689 204 194 83 85 121 109 
10.  142218-142949 (0.04298) 121/7 112/4 700 685 217 170 50 50 166 120 
11.  142657-143447 (0.04085) 121/7 112/4 753 759 241 197 57 64 184 133 
12.  73524-74123 (0.03956) 121/7 112/4 600 600 90 87 17 18 73 69 
13.  142418-143193 (0.03897) 121/7 112/4 738 723 234 171 64 62 169 109 
14.  83824-84704 (0.03861) 121/7 112/4 844 836 241 212 64 67 176 144 
15.  144432-145094 (0.03845) 121/7 112/4 634 625 159 139 44 45 115 94 
16.  84916-85605 (0.03844) 121/7 112/4 682 682 129 118 30 28 99 90 
17.  144680-145297 (0.03844) 121/7 112/4 619 616 139 124 40 43 99 81 
18.  142950-143688 (0.03843) 121/7 112/4 734 734 193 170 58 63 135 107 
19.  146092-146780 (0.03772) 121/7 112/4 669 669 165 155 59 58 106 97 
20.  141954-142656 (0.03737) 121/7 112/4 704 683 177 141 50 45 126 96 
21.  84705-85376 (0.03705) 121/7 112/4 664 663 128 118 43 45 85 73 
22.  75425-77015 (0.03481) 121/7 112/4 1473 1452 572 515 111 202 461 313 
23.  143689-144431 (0.03462) 121/7 112/4 744 738 193 179 72 72 121 107 
24.  84375-85115 (0.0346) 121/7 112/4 732 730 136 125 33 33 103 92 
25.  56673-58057 (0.03459) 121/7 112/4 1214 1185 557 461 112 115 443 346 
26.  83609-84374 (0.03428) 121/7 112/4 719 711 178 163 28 26 150 137 
27.  143194-143894 (0.03424) 121/7 112/4 702 702 173 165 58 60 115 105 
28.  56978-58330 (0.03251) 121/7 112/4 1178 1179 456 390 91 93 365 297 
29.  141742-142417 (0.0325) 121/7 112/4 671 671 142 125 42 40 100 85 
30.  76040-77222 (0.03236) 121/7 112/4 1118 1104 393 379 112 162 281 217 
31.  141207-141953 (0.03206) 121/7 112/4 718 718 159 152 61 58 97 93 
32.  128753-131079 (0.03166) 121/7 112/4 2022 2010 1003 902 218 225 783 674 
33.  85606-86435 (0.03147) 121/7 112/4 784 782 227 207 63 69 164 138 
34.  matK 121/7 112/4 1675 1675 239 223 113 107 126 116 
35.  rbcL 121/7 112/4 1456 1435 99 90 33 35 66 55 

Set 1 consists of minimum of three sequences (species) per genus; Set2 consists of minimum of six sequences (species) per genus 

Discrimination ability of all hyper-variable regions was evaluated using SPIDER and four different 
machine learning classification methods in WEKA. The percentages of correct identification rates for each region 
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along with minimum, maximum and average rates across all regions are shown in the Table 2. It was seen that 
with increase in minimum number of plant species for a particular genus, there is improvement in the correct 
identification rates. Distance based analysis in SPIDER and all the machine algorithms except Naïve Bayes gave 
correct identification rates of more than 93% at genus level for all the regions. Average correct identification rates 
across all regions ranges from 95% to 99% for these methods. Whereas Naïve Bayes gave average identification 
rate of 76% in case of datasets with minimum 3 species from each genus and 82% in case of datasets with 
minimum 6 species from each genus. The high identification rates signify that there is enough variability at genus 
level across hyper-variable regions under study.  

Table 2. Position of 33 hyper-variable windows along with matK and rbcL, their nucleotide diversity and percentage correct identification of 
two datasets at genus level using different classification methods. 

S. No. Position of hyper-variable 
windows in MSA 

(Nucleotide Diversity) 

%age correct identification at genus level  
SPIDER (NN) J48 Jrip SMO Naïve Bayes 
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 

1. 145095-145812 (0.06278) 95.04 99.11 96.04 98.85 95.29 99.11 95.37 99.11 84.07 95.35 
2. 145298-146091 (0.06081) 95.87 100 94.63 100 93.22 99.64 96.85 100 91.73 98.24 
3. 145519-146321 (0.05806) 97.52 100 94.97 98.24 95.79 99.11 97.53 100 87.62 94.67 
4. 73724-74394 (0.05733) 95.87 99.11 96.70 99.11 96.52 100 96.70 99.12 71.09 76.82 
5. 73924-74624 (0.05268) 96.69 99.11 96.70 99.10 96.21 99.10 96.70 99.10 72.42 78.18 
6. 143895-144679 (0.04555) 99.17 100 96.88 99.11 93.74 98.57 98.35 100 71.18 76.82 
7. 144895-145518 (0.04525) 95.04 99.11 94.63 98.05 93.72 97.61 95.47 99.12 71.10 76.82 
8. 144178-144894 (0.04479) 97.52 99.11 98.34 99.11 95.88 99.56 97.51 99.11 78.53 84.87 
9. 145813-146527 (0.04418) 95.87 100 96.72 98.91 94.82 97.19 96.79 100 71.09 76.82 
10. 142218-142949 (0.04298) 97.52 100 96.69 99.10 95.62 99.10 97.52 100 78.53 85.76 
11. 142657-143447 (0.04085) 96.69 100 97.50 100 96.75 100 96.77 100 79.36 84.88 
12. 73524-74123 (0.03956) 96.69 100 96.71 100 95.64 99.03 97.54 100 71.09 76.82 
13. 142418-143193 (0.03897) 97.52 100 97.52 100 96.52 100 96.12 100 71.09 84.86 
14. 83824-84704 (0.03861) 98.35 100 94.49 98.11 96.16 99.11 96.38 99.91 77.71 83.96 
15. 144432-145094 (0.03845) 93.39 99.11 97.44 99.83 95.94 98.77 96.69 99.12 71.09 76.82 
16. 84916-85605 (0.03844) 97.52 100 96.71 99.30 96.71 100 97.53 100 71.11 76.82 
17. 144680-145297 (0.03844) 95.04 99.11 96.53 98.59 93.80 98.23 96.12 99.11 76.72 82.80 
18. 142950-143688 (0.03843) 96.69 99.11 96.69 99.11 96.19 98.74 96.03 99.11 78.53 84.86 
19. 146092-146780 (0.03772) 94.21 99.11 95.71 98.24 95.60 98.24 95.77 99.11 71.09 76.82 
20. 141954-142656 (0.03737) 97.52 100 95.12 98.39 94.72 97.30 96.76 100 71.10 76.82 
21. 84705-85376 (0.03705) 97.52 100 97.12 100 96.87 100 97.53 100 71.10 76.82 
22. 75425-77015 (0.03481) 95.87 97.32 96.20 98.03 93.89 98.48 94.72 98.20 86.81 88.06 
23. 143689-144431 (0.03462) 99.17 100 98.35 99.09 94.88 99.09 99.17 100 71.09 76.82 
24. 84375-85115 (0.0346) 95.04 100 95.87 99.11 96.36 100 97.52 100 71.09 76.82 
25. 56673-58057 (0.03459) 95.87 99.11 95.87 98.20 95.21 98.57 95.21 99.11 92.58 100 
26. 83609-84374 (0.03428) 96.69 99.11 97.51 99.11 97.27 100 96.69 100 71.10 76.82 
27. 143194-143894 (0.03424) 96.69 99.11 97.53 100 93.89 99.09 96.69 99.09 77.71 83.95 
28. 56978-58330 (0.03251) 95.04 100 97.51 100 95.12 97.26 95.46 100 92.56 100 
29. 141742-142417 (0.0325) 98.35 100 94.55 98.09 95.54 98.82 95.37 100 71.09 76.82 
30. 76040-77222 (0.03236) 95.04 100 95.12 97.36 94.62 96.80 95.94 98.22 79.79 85.73 
31. 141207-141953 (0.03206) 97.52 100 96.13 100 95.63 99.45 97.54 100 71.09 76.82 
32. 128753-131079 (0.03166) 95.87 98.21 94.08 98.06 95.14 98.68 96.72 99.12 86.81 93.82 
33. 85606-86435 (0.03147) 97.52 100 96.92 100 95.67 99.92 96.69 100 71.09 76.82 
34. matK 97.52 100 96.71 99.11 96.04 98.94 97.54 100 71.09 76.82 
35. rbcL 96.69 99.11 97.54 100 96.71 99.57 96.71 99.12 71.09 76.82 

Minimum %age 93.39 97.32 94.08 97.36 93.22 96.80 94.72 98.20 71.09 76.82 
Maximum %age 99.17 100 98.35 100 97.27 100 99.17 100 92.58 100 
Average %age 96.58 99.54 96.39 99.07 95.48 98.95 96.68 99.57 76.35 82.65 

Set 1 consists of minimum of three sequences (species) per genus, Set2 consists of minimum of six sequences (species) per genus, SPIDER 
(NN) = ‘NearNeighbour’ function in SPIDER, J48 = Decision tree based classifier, Jrip = Rules based classifier, SMO = Support vector 
machine based classifier, Naïve Bayes = Bayesian-based classifier. Results are averaged over 10 fold cross-validation repeated 10 times for 
all four machine learning classification methods 

3.2.2. Validation at species level 

From location of 33 hyper-variable regions given in Supplementary Table 3, it was found that some of 
the regions are falling in the same genic/intergenic location and often overlap. In such cases, the region with 
maximum nucleotide diversity was selected for further analysis. This approach helped us to narrow down our 
analysis to 6 hyper-variable regions (Supplementary Table 4). In order to fulfil requirement of more than one 
sequence of a particular plant species, sequence richness regime was followed using BLASTN to find homologous 
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sequences related to same species for each of the above six regions. Furthermore, out of 133 sequences in the 
aligned window, the sequence with least gaps i.e. sequence with shortest length was used as query in the BLASTN 
search. A separate BLASTN search was also carried out using the standard matK and rbcL sequences as queries.  
The results were filtered based on 90% or more query coverage and stored in the local database. From this 
database, 4 separate dataset files i.e. files with minimum 2, 3, 4 and 5 sequences from same species were prepared 
in FASTA format for each region. In this way, a total of 32 dataset files belonging to 8 regions were created. The 
sequence names and description lines in these dataset files were further fine tuned to meet specific requirements 
of WEKA, SPIDER and in house written PERL script. All these datasets were then aligned separately using 
Clustal Omega command line version 1.2.2. Variable, singleton and parsimony informative sites were computed 
for each aligned dataset and the results are shown in Table 3. 

 
Table 3. Characteristics of 6 hyper-variable windows along with matK and rbcL selected after sequence richness regime. 

 
Using program written in R language, “BestCloseMatch” function of SPIDER was executed on each 

dataset to find percentage of correct/ incorrect/ ambiguous/ not identified sequences. The aligned files were further 
analysed using NearNeighbour function of SPIDER and four different machine learning classification methods in 
WEKA to compute correct identification rates both at genus and species levels and the results are shown in Table 
4. From the results, it was seen that for these 8 different regions, correct identification rates at genus level are 
almost similar with identification rates predicted earlier using sequences without enrichment as shown in Table 
2. However at species level, the correct identification rates dropped significantly as compared to those obtained 
at genus level. The presence of large number of ambiguous sequences within threshold distance of 1% may explain 
the reason of less identification rates at species level. 

3.3. Comparisons of different methods and hyper-variable regions  

Machine learning algorithm SMO and near neighbour function in SPIDER performed best with highest 
correct identification rates both at genus and species levels.  In another study by Hartvig et al. (2015), distance 

S. No. Position of hyper-variable 
windows in MSA (Midpoint) 

Location of the Region 

Minimum 
number of 

sequences for 
each species 

Number of 
Sequences/ Species 

/ Genera 

Alignment 
Length 

Variable 
Sites 

Singleton 
Sites 

Parsimony 
Informative 

Sites 

1.  
145095-145812 

(145418) 
ycf1 

2 368/95/11 692 247 14 233 
3 276/50/5 653 163 11 152 
4 228/35/2 629 124 5 119 
5 196/27/2 629 118 4 114 

2.  
73724-74394 

(74023) 
cemA, cemA-petA 

2 372/96/11 600 107 3 104 
3 280/51/6 600 91 4 87 
4 232/36/3 600 82 3 79 
5 200/28/3 600 76 1 75 

3.  
83824-84704 

(84218) 
rps12-clpP, clpP / rps12-psbB 

2 367/95/11 842 293 13 280 
3 275/50/5 830 243 28 215 
4 227/35/2 808 167 22 145 
5 195/27/2 805 175 18 157 

4.  
75425-77015 

(76152) 
petA, petA-psbJ, psbJ, psbJ-psbL 

2 360/92/11 1493 654 21 630 
3 274/50/5 1489 446 115 331 
4 226/35/2 1453 268 22 246 
5 194/27/2 1446 245 30 215 

5.  
56673-58057 

(57623) 
trnL-trnF, trnF, trnF-ndhJ 

2 351/92/11 1206 786 199 587 
3 257/46/5 1107 653 244 409 
4 215/33/2 1033 282 8 274 
5 187/26/2 1034 280 8 272 

6.  

128753-131079 
(129801) 

ndhF, ndhF-rpl32, rpl32, 
rpl32-trnL 

2 336/83/7 1972 848 17 831 
3 260/46/2 1888 532 42 490 
4 227/35/2 1875 484 39 445 
5 195/27/2 1867 456 40 416 

7.  matK 

2 481/136/16 1680 963 60 903 
3 337/65/10 1668 881 31 850 
4 259/40/5 1660 837 29 808 
5 219/31/5 1660 818 27 791 

8.  rbcL 

2 469/118/17 1439 266 110 156 
3 361/66/14 1439 200 65 135 
4 295/45/7 1440 166 58 108 
5 255/35/7 1440 162 56 106 

e-ISSN : 0976-5166 
p-ISSN : 2231-3850 Bhupinder Pal Singh et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203126 Vol. 12 No. 3 May-Jun 2021 648



based method ‘Taxon DNA’ and SMO also gave highest correct identification rates for 21 species of genus 
Dalbergia based on various DNA barcode regions. At genus level before sequence richness regime, 100% correct 
identification rate was achieved for few hyper-variable regions with all the methods in case of datasets with 
minimum 6 species for each genus. Naïve Bayes was less efficient than other machine learning algorithms due to 
requirement of large dataset for analysis. Weitschek et al. (2014) reported less efficiency of J48 and Jrip in 
comparison to other methods for empirical dataset of fungi and algae. However efficiency of these algorithms was 
comparable with SMO for datasets at genus level in the present study. Similar results were observed from the 
datasets obtained after sequence richness regime as shown in Table 4. At species level, maximum of 69% correct 
identification rate was achieved both in case of SMO and SPIDER. The average correct identification rate was 
highest in case of SMO, followed by SPIDER, Jrip, J48 and Naïve Bayes. 

  
Table 4. Location of six hyper-variable windows along with matK and rbcL selected after sequence richness regime, Correct/Incorrect/ 

Ambiguous/Not Identified sequences using ‘BestCloseMatch’ function of SPIDER, percentage correct identification at genus and species 
levels using different classification methods. 

S. No. Location of 
hyper-

variable 
windows Min. 

No. 

Genus Level Analysis Species Level Analysis 
SPIDER 
(BCM) 

Correct/ 
Incorrect/ 

Ambiguous / 
Not Identified 

%age correct identification SPIDER 
(BCM) 

Correct/ 
Incorrect/ 

Ambiguous/ 
Not Identified

%age correct identification 

SPIDER 
(NN) 

J48 Jrip SMO
Naïve 
Bayes

SPIDER 
(NN) 

J48 Jrip SMO
Naïve 
Bayes

1. ycf1 

2 365/0/0/3 100 97.72 97.42 100 94.30 117/20/228/3 40.22 28.93 16.07 42.87 8.59
3 274/0/0/2 99.64 99.28 99.28 99.64 97.86 78/17/179/2 37.68 37.63 27.77 42.20 11.07
4 228/0/0/0 100 100 100 100 100 55/11/162/0 30.70 35.26 30.83 35.08 14.40
5 196/0/0/0 100 100 100 100 100 54/7/135/0 34.18 37.31 32.51 38.35 15.92

2. 
cemA, 

cemA-petA 

2 372/0/0/0 100 97.38 96.76 100 88.72 64/8/300/0 26.08 24.33 12.42 31.00 7.74
3 279/1/0/0 99.64 98.93 98.36 99.64 86.93 58/7/215/0 27.14 32.86 24.54 33.29 10.64
4 232/0/0/0 100 100 100 100 95.78 51/6/175/0 26.72 33.61 27.70 33.87 12.48
5 200/0/0/0 100 100 100 100 93.40 48/2/150/0 26.00 36.00 30.00 34.45 14.70

3. 
rps12-clpP, 

clpP / rps12-
psbB 

2 363/0/0/4 99.73 96.65 96.49 99.92 89.95 103/18/242/4 40.05 28.88 16.57 43.93 9.50
3 272/0/0/3 99.64 99.57 99.64 99.64 94.57 70/18/184/3 41.09 42.56 26.34 44.11 13.93
4 225/0/0/2 100 100 100 100 100 47/15/163/2 37.89 41.19 27.18 43.26 15.17
5 193/0/0/2 100 100 100 100 100 47/9/137/2 34.36 40.28 29.40 38.73 19.14

4. 
petA, petA-
psbJ, psbJ, 
psbJ-psbL 

2 359/0/0/1 100 97.47 96.69 99.72 95.28 181/30/148/1 55.56 38.11 25.39 57.92 9.56
3 273/0/0/1 99.64 99.64 99.64 99.64 94.55 125/26/122/1 49.64 48.69 39.94 53.52 11.54
4 226/0/0/0 100 100 100 100 100 92/23/111/0 46.02 44.97 39.14 50.71 14.23
5 194/0/0/0 100 100 100 100 100 78/13/103/0 42.78 42.88 40.95 49.21 16.95

5. 
trnL-trnF, 
trnF, trnF-

ndhJ 

2 342/0/0/9 99.72 98.01 96.87 99.72 95.73 110/26/206/9 45.01 27.26 22.62 48.80 12.36
3 252/0/0/5 99.61 99.00 99.23 99.62 98.54 76/17/159/5 42.80 36.92 35.04 44.74 19.30
4 214/0/0/1 100 100 100 100 100 59/14/141/1 40.00 34.58 33.42 39.52 21.25
5 186/0/0/1 100 100 100 100 100 52/11/123/1 42.78 38.41 37.34 41.96 25.29

6. 
ndhF, ndhF-
rpl32, rpl32, 
rpl32-trnL 

2 335/0/0/1 100 97.87 97.57 100 96.43 194/41/100/1 69.05 51.38 35.43 69.29 13.98
3 259/0/0/1 100 100 100 100 100 129/40/90/1 63.08 60.04 47.62 64.62 13.73
4 226/0/0/1 100 100 100 100 100 112/29/85/1 63.88 61.48 48.88 65.40 16.70
5 194/0/0/1 100 100 100 100 100 95/22/77/1 65.64 62.72 53.08 67.36 19.09

7. matK 

2 458/13/6/4 96.47 93.76 92.81 96.11 67.99 186/76/215/4 49.06 36.45 20.50 51.91 3.95
3 331/3/0/3 98.81 96.00 95.67 98.81 79.59 156/32/146/3 57.57 51.70 38.00 60.78 5.64
4 257/0/0/2 100 100 99.84 100 84.18 111/17/129/2 54.44 49.99 44.04 58.81 7.33
5 216/0/0/3 99.54 99.50 99.50 99.54 84.94 92/11/113/3 52.97 53.26 47.27 58.27 8.67

8. rbcL 

2 462/3/0/4 99.15 97.66 95.78 99.62 74.84 120/32/313/4 47.33 42.47 21.68 49.81 4.50
3 358/1/0/2 99.72 98.06 96.38 99.72 75.07 141/16/202/2 56.23 52.74 32.36 56.45 5.93
4 293/0/0/2 100 97.96 98.00 99.93 81.72 119/11/163/2 59.66 55.23 39.77 59.16 7.26
5 253/0/0/2 100 97.65 97.53 100 80.40 116/6/131/2 62.35 59.77 42.90 61.38 8.35

SPIDER (BCM) = ‘BestCloseMatch’ function in SPIDER, SPIDER (NN) = ‘NearNeighbour’ function in SPIDER, J48 = Decision tree based 
classifier, Jrip = Rules based classifier, SMO = Support vector machine based classifier, Naïve Bayes = Bayesian-based classifier. Results 
are averaged over 10 fold cross-validation repeated 10 times for all four machine learning classification methods 

Efficiency of methods also depends on the minimum number of sequences for a particular genus or 
species. It was observed that for genus as well as species specific datasets, the efficiency of methods increases 
with increase in minimum number of sequences representing each genus or species. At genus level, increase in 
number of sequences from each species from 2 to 5 resulted in 100% correct identification for all the methods. In 
fact, for most of the methods, 100% correct identification rate was obtained with even four samples per species. 
However at species level, the maximum correct percentage identification obtained was 69% using SMO and 
SPIDER. This lower level of accuracy is attributed to high percentage of ambiguous sequences (Table 4). Due to 
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increase in ambiguous sequences at species level, significant drop in the percentage of correct identification rates 
was observed for all the methods. The ambiguity itself depends upon the variability in the sequences as well as 
the number of samples representing each species. All the hyper-variable regions detected in this study were found 
to be ambiguous when considered for species level identification. The region ‘ndhF, ndhF-rpl32, rpl32, rpl32-
trnL’ resulted in high (69%) correct identification using SMO and SPIDER even when using minimum two 
samples from each species. High identification rate was attributed to less ambiguity in this region as compared to 
other regions. The percent identification rate of above region was found to be higher as compared to well 
established markers for identification of plant species (matK and rbcL). The accuracy for these regions may further 
increase by including more rich datasets with a very high number of samples from each species as well as using 
more diverse species. Therefore, it is reflected from this investigation that SMO and SPIDER can be the best 
methods for identification at genus as well as at species levels. All the hyper-variable regions detected in this 
study can be used for identification of genera but ‘ndhF, ndhF-rpl32, rpl32, rpl32-trnL’ region emerged as the best 
region when it comes to identify plant species of Solanaceae family.   

4. Conclusion 

The present study involves utilization of in silico methods to identify potential DNA barcodes for 
solanaceous species and assess their discriminating potential using distance based method SPIDER and machine 
learning classification algorithms J48, Jrip, SMO and Naïve Bayes. Out of these methods, SMO and SPIDER 
were the best methods for species identification both at genus and species levels while Naïve Bayes was the 
poorest among all methods for our datasets. All the identified DNA barcodes performed well at genus level while 
DNA barcode ‘ndhF, ndhF-rpl32, rpl32, rpl32-trnL’ gave highest correct identification rate at species level. These 
barcodes can be validated experimentally by using DNA extraction, amplification and sequencing from more plant 
species belonging to Solanaceae family. With the availability of more sequences, the correct identification rates 
will also increase at species level. This study will provide a lead for the scientists to develop DNA barcodes for 
Solanaceous species which are yet to be explored for DNA barcoding studies at family level. 
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