






that their inverse function leads to multiple solutions during occurrence of transformation. This may require 
selections or development of (inverse) criterion for taking decision on selecting right solution values to continue 
with inverse algorithms (for retrieving original image information). It will definitely increase the volume of data 
to be interpreted. It is not covered in this paper as the formulation is yet to be satisfactorily tested. 
Returning to issue of interest, the argument for image partitioning of an image is the certain basic features within 
image that are radically present in regions of image. These distinct features can be appropriately used for 
discretizing the image on larger scale thus leading to partitioning.  
Thus, it may well assumed certain feature is distinctively present in one partition of image; while another partition 
might be involving a feature different from the previous one. Such characterizing features may be represented 
using Lipchitz (functions, properties).  

 Let 𝑓ଵ, 𝑓ଶ, 𝑓ଷ etc be Lipschitz such that 𝑓ଵ, 𝑓ଶ, 𝑓ଷ: 𝑋 → 𝑋, then 𝑓ଵ be characterizing partition-1 of image 
while 𝑓ଶ be characterization partition-2 of image and so on.  

 The proper identification of Lipschitz function in image space can lead to appropriate partitioning 
strategy for given image.  

 Occurrence of more than one function ሺ𝑓ଵ, 𝑓ଶ etc) in image space signifies some level of discontinuity 
from the perspective of individual functions i.e. partition space characterized by function 𝑓ଵ (say) might 
have discontinuous 𝑓ଵ at partitioning line or curve.  

 This simply means characteristic function in one partition space may experience discontinuity in 
mathematical sense or significant jump in value towards/at partition curve.  

 This viewpoint may be extended to various functions ሺ𝑓ଵ, 𝑓ଶ etc) in different partition space.  
 Individual partitions can be treated as closed and bounded from metric space point of view with regard 

to non-empty set 𝑋. Let 𝐴 ⊂ ℝଶ also belongs to a partition in image space.  
 Thus there also occurs 𝜀-neighbourhood of 𝐴 represented by 𝑆஺,ఌ (Fig. 5). If  𝐴 is closed and bounded 

subset of ℝଶ then 𝑆஺,ఌ is also closed and bounded.   
 Now Hausdorff space 𝐻ሺ𝑋ሻ can be defined considering individual partitions of image. 

Let 𝐴, 𝐵 ∈ 𝐻ሺ𝑋ሻ, then Hausdorff metric can be appropriately defined as  

𝒽ሺ𝐴, 𝐵ሻ ൌ 𝑚𝑎𝑥 ቄ𝑖𝑛𝑓൛𝜀: 𝐵 ∈ 𝑆஺,ఌൟ, 𝑖𝑛𝑓൛𝜀: 𝐴 ∈ 𝑆஻,ఌൟቅ 

where 𝑆஺,ఌ is the 𝜀-neighbourhood of 𝐴 and  𝑆஻,ఌ is the 𝜀-neighbourhood of 𝐵 

 
 

Fig. 5: 𝜀-neighbourhood 
 

 Thus 𝑆஺,ఌ, 𝑆஻,ఌ holds not only the key for identification of partition curve but also for other 
characterizations of partition space. This provides better flexibility for simultaneous considerations of 
more than one Lipschitz (i.e. 𝑓ଵ, 𝑓ଶ, 𝑓ଷetc.) and possibly a way to connect or collectively interpret more 
partition space. (There seems little reason, at least at this stage, to doubt as why not all partitions in an 
image handled simultaneously).  

Here we appropriately treat image properties like multiple colors, contrasts, brightness etc. Each property is 
identified through functional information or distribution. Property related information can be adjusted and checked 
for partitioning possibilities. Related descriptions favor functions that are continuous on ℝଶ. Often a region A of 
ℝଶ is considered to be closed and bounded subset of ℝଶ. We can also consider many subsets of ℝଶ each of which 
are closed and bounded. Let their union,∪௜ୀଵ

௡ 𝐴௜ be completely describing the input image (region). Indicated 
union operation ascertains flexibility that 𝐴௜′𝑠 may be overlapping each other but in the proposed algorithm the 
overlapping aspect of the clusters is not considered (but left for future work).  
 

4. Application 

Methodology is illustrated through algorithm given below.         
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The following discrete steps are involved: 
1. Input a grey image 𝐼 
2. Convert 𝐼 to pixel values 𝑝௜,௝ ∈ ሾ0,255ሿ, zero being black, 255 being white in between there are shades 

of grey. 
3. The pixel value of each cell is compared with at most 𝑛ଶ neighboring cells (𝑛 each horizontally and 

vertically) and if the value matches to tolerance 𝑡, a cluster 1  is engraved out with partitioning curve 𝐶ଵ 
4. The process is repeated unless the last cell is reached 
5. If any cluster 𝒞௥ ⊂ 𝒞௦, then reject 𝒞௥ 
6. Find the centre of distribution ሺ𝐿ሻ of all clusters individually.  
7. Replace  𝑝௜,௝ with   𝐿 ∀ 𝑖, 𝑗 ∈ 𝒞௥  . 
8. With new pixel values construct the image. 
9. Output image 𝐼ᇱ. 

While forming the clusters, the outliners (if any) in the adjacent positions are not included in any of the clusters 
and will be left unprocessed. The composition of mappings are used and the centre of distribution is defined by 
the function 𝑓: 𝕀 → 𝕀, ∈ ሾ0,255ሿ , given as 𝑓ሺ𝐴௜ሻ ൌ 𝒻ሺℊሺ𝐴௜ሻሻ ൌ 𝐵௜   ∀ 𝐴௜ ∈ 𝒞 , where  𝐴௜ ൌ ⋃ 𝑝௜,௝ is the set of 
all pixels in a cluster 𝒞௜, 𝒞 ൌ ሼ𝒞ଵ, 𝒞ଶ … … 𝒞௤ሽ, 𝑞=number of clusters, 𝒻 = floor function 

 ℊሺ𝐴௜ሻ ൌ
ଵ

ே
 ∑ 𝑥௜ ே

ଵ  ∀ 𝑥௜ ∈ 𝐴௜   
  

𝑓 is a contraction on the non-empty set of pixel points 𝑝௜,௝ ∈ ሾ0,255ሿ. The distance between two clusters is 
calculated in Root Mean Square sense, metric 𝜌 is taken to be the quality metric PSNR.                          
Each pixel in a cluster (region) is similar with respect to some characteristic or computed property, such as color, 
texture or intensity. Human vision is receptive to edges hence keeping the factor 𝑛 small will preserve the 
informative edges. Above algorithm is implemented on various 64 ൈ 64 test images (Fig. 6a, b, c).  Steps 1, 2, 8 
and 9 of the algorithm are implemented using python on spyder IDE, remaining of the computation is done on 
MS excel. The algorithm can be tweaked or modified to suit typical software like python language and digital 
images with parametric variety can be processed. 

5. Result and analysis 

Fig. 6a, b, c displays the test image 𝐼 (original) and 7a, b, c and 8a, b, c are the corresponding output images 𝐼ᇱ 
(compressed or data reduced). The result obtained for the test images taking 𝑛 ൌ 8, 𝑡 ൌ 30 then taking  𝑛 ൌ 8, 
𝑡 ൌ 10 is summarized in the table 1.  
 

                                      
                              Fig.6 Test image             a                                       b                                          c 

 

                                                                                           
                          Fig.7 Output image             a                                       b                                          c 

 
 

                                                                                                                                   
                             Fig.8 Output image           a                                       b                                          c 
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 Figure
Space 
(KB) 

No. of
clusters

PSNR 

 
Test Image

6a 12.4 -- -- 

6b 12.7 -- -- 

6c 13 -- -- 

Output 
Images 

𝑛 ൌ 8, 𝑡 ൌ
30 

7a 0.73 134 33.37 

7b 0.54 95 25.33 

7c 0.68 125 23.48 

Output 
Images 

𝑛 ൌ 8, 𝑡 ൌ
10 

8a 1.50 343 39.71 

8b 1.94 528 39.66 

8c 2.22 586 39.34 

 
Table1: Test summary 

 
The method is lossy which means the output image is approximate to the original image that is the matrix 
representing 𝐼ᇱ is close to matrix of  𝐼. Quality of the output images when compared to the corresponding originals 
is obtained as PSNR.  Preliminary inquiry indicates that increasing the number of clusters by decreasing 𝑛 and/or 
tapering the tolerance ሺ𝑡ሻ is likely to improve the PSNR but will not be space efficient. For optimal partitioning 
curve, optimum number of clusters is required both in terms of storage space and time consumption during search 
process for clustering and image reconstruction.  

6. Conclusion 

An algorithm for partitioning the digital images into clusters of variable sizes that takes into account factors 𝑛 
(dimension of square block of pixels) and 𝑡 (tolerance in terms of the range of pixel values within the square 
block) has been developed based on Contraction mapping. The centre of distribution of the cluster is defined such 
that it facilitates partitioning and assists in compression process. The results indicate implementation success for 
the proposed algorithm. Comparison of input and the output images demonstrate reduction in image data by 
preserving the important content and structures of the original image as anticipated. The method is lossy, though. 
Novel algorithm has potential to downsize the larger sized images to suit data streaming for smaller display 
gadgets like phones, tablets etc. 
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