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Abstract - In this paper, we define and study a new problem in the field of natural language processing 
and data science called Sensitive Keyword Detection, which aims at detecting variants of keyword in each 
textual product. We propose a method using approximate dictionary matching algorithm and context-
score to solve this new text mining problem in a general way. Given a product data set, for each document 
will be dectected keyword-variant pairs, then to determine if they are similar in semantic, we compare the 
context score between them. We conduct experiments on 1.189.690 textual sentences extracted from 
descriptions and titles of 300.000 products, each textual sentence contains an original keyword or a 
keyword variant. Experimental results show that important role of the context-score approach and the 
proposed method is effective when using context-score based on character and word embedding. 

Keywords: Approximate dictionary matching; Context-score; Sensitive keyword; Keyword detection; Keyword 
variant. 

1. Introduction 

E-commerce today is developing very fast, some typical e-commerce floors such as Amazon, Alibaba. 
Sellers can choose the trading floor that suits them to sell their products. Buyers can easily choose their favorite 
products to buy. However, to help buyers buy quality products, right types and brands. There are many problems 
that pose many challenges to e-commerce product managers, such as preventing the sale of counterfeit products, 
counterfeit products, and information about product titles and descriptions that are concise, informative. Many 
studies have done these problems, such as determine quality of Lazada's product titles [1,2,3], logo detection 
and recognition [4, 5, 6], detection of e-commerce anomalies [7, 8, 9]. Transaction fraud detection [10, 11, 12], 
query auto-completion [13, 14], generating e-commerce product titles and computing their score [15, 16], 
product duplicate detection [17, 18], a multimodal joint method for predicting attributes and extracting values 
from textual product data [19]. 

Approximate dictionary matching [25, 26] (keyword, string, and substring matching, matching in 
dictionaries) is the task of approximate computing to find all keywords in a keyword collection V such that they 
have similarity that is no smaller than a threshold α with a query keyword x. This task has a broad range of 
applications, such as spelling correction, flexible dictionary look-up, record linkage, and duplicate detection [20, 
21], bioinformatics [22, 23], web crawling [24]. 

Word embeddings are also known as real-valued vectors, where each word is represented as a vector of 
low dimension. They are learned from linguistic neural network models [27, 28] to encode semantic information 
and relationships between words in a large unlabeled corpus. They can be used effectively to represent sentence 
level, text level, context level. Many problems have been applied successfully and achieved high results such as 
text classification, document classification, information retrieval, question answering, name entity recognition, 
sentiment analysis. Besides, character embbedings are generated from models [29, 30] that added missing 
information (e.g. the morphology of words)  in word embeddings. Many studies use character embeddings that 
have achieved excellent results, such as detecting misogyny in Spanish tweets [31], detecting protein S-
sulfenylation sites [32].  

In this paper, we study the problem of identifying sensitive keywords on product data set. We apply 
approximate dictionary matching algorithm [25] to identify sensitive keyword variants. This algorithm is 
indexed a dictionary of keywords and searches for variations of the keyword in each textual product. In order to 
select the best keyword-variant pairs that are semantically similar, we propose using a context-score approach: 
similarity between the context of the keyword and its variation, high context-score that means that the variant 
and keyword are not only similarity in word form but also similarity in semantic space. Context-score is 
calculated based on characters or word embeddings. 

 The rest of this paper is organized as follows: Section 2 presents relevant concepts and problem 
definition; Section 3 presents the proposed method with the framework of sensitive keywords detection system, 
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each task and technique will be detailed; Section 4 describes our experiments and results. Some conclusions are 
presented in the last section. 

2. Problem definition 

In this section, we formally define some concepts and the problem of sensitive keywords detection. As a 
problem of analyzing and detecting sensitive keywords, working with the input is a set of product documents of 
a particular trading floor, these documents are posted by sellers. Note that we consider description and title of 
each product on the floor as a document. 

   Orginal keyword: Is the exact keyword about the brand (e.g. adidas, iphone, abbott) of the product or 
banned keywords (e.g., cannabis, shisha, smoking cannabis) that associate related to acts that are not allowed by 
law to be written in product descriptions by sellers. 

    Keyword variant: Is the keyword that the seller intentionally incorrectly spells or lacks or adds some 
characters to the original keyword in the process of product description for sale on e-commerce floors, in order 
to deceive buyers understand the semantics of those keyword variations as the original keyword. For example: 
the orginal keyword ‘adidas’ has variants as ‘adjdas’,‘aadidas’, and ‘addidass’. 

   Sensitive keywords: Include orginal keywords and variants of orginal keywords.    
   Similarity score of two keywords: Let X and Y denote the character sets of the keywords x and y, 

respectively. According to research [25], the cosine similarity between the two keywords x and y is. 

                Cos ( , )
X Y

ine X Y
X Y


                                 (1) 

Similarity score of two contexts (context-score): Let xc and yc  denote the contexts of the keywords x and 

y, respectively. The context score between the two contexts of x and y is. 

            
( ). ( )
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In which ( )xv c is a representation vector of xc and ( )yv c is a representation vector of yc . These vectors 

can be computed base on charaters, word embeddings. 

  Sensitive Keywords Detection: Given an original keyword set 1 2 | |{k ,k ,...,k }KK  , and a document set 

1 2 | |{d ,d ,...,d }DD   , we need to detect keyword-variant pairs (including orginal keywords and variants) in 

each document d D .   
Note that one keyword-variant pair in this paper is understood as the following cases: (1) an original 

keyword in the set K  and this keyword is also detected in the input document; (2) an original keyword in K  
and its variation is detected in the input document. 

 In fact, it's easy to determine if the original keyword appears in the input or not. And when we determine 
the variation of the keyword appears in the input or not is often more difficult. To determine whether the 
original keyword and its variant are really similar in form and semantics, we use two information to confirm: 
similarity score and context-score. 
 

3. The proposed method 

Derived from a product data set is posted by sellers on an e-commerce platform, for example: sendo.vn, 
tiki.vn, amazon.com, alibaba.com. We need to identify sensitive keywords in each document. Figure 1 depicts a 
framework in our proposed method. For a document, we perform following steps: (1) Re-processing; (2) Using 
an approximate algorithm to identify the set of candidates that are variations of keywords; (3) Select potential 
variation candidates; (4) Calculate the context-score and choose keyword-variant pairs that satisfy a score 
threshold. In the next section we will detail these steps. 
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Figure 1. A framework of our proposed method 

.  

3.1. Re-processing 

The mission of this task is to process documents, standardize, and word segmentation. Specifically, 
each document is stripped of html tags, meaningless icons. Each paragraph is marked as a corresponding 
sentence. We then standardize spaces, converting words in each document into lowercase words. We then use 
the long-matching algorithm and a dictionary of bi-gram and tri-gram keywords to tokenize the input document. 
After tokenizing is finished we use a dictionary of stop-words to remove stop words. 

3.2. Detecting sensitive keyword candidates 

The simplest way to identify sensitive keyword candidates is to use formula (1) to match with the 

original keywords in the set 1 2 | |{k ,k ,...,k }KK  and in the process of matching if similarity score between the 

original keyword and variant hits the threshold, these candidates will be selected. However, this way is 

impractical when the number of keywords K  is huge (e.g., more than one million). So, in order to identify 

variations of keywords quickly, we apply the approximate string matching algorithm [25], and denote it as 
SimString. 

Algorithm 1: Sensitive keyword candidate detection 

Input: 1 2{ , ,..., }ld s s s ,  - threshold for the similarity, n - grams of features 

Output: R: list of keyword variant pairs 
1 []R   

2  for each s d do 
3         Strs=n_gram(s) 
4               for each str strs do 
5                   List_cadidate=SimString(str,  ,n) 
6                   if len(List_cadidate)>0 then 
7                        _R R List Cadidate   

8                    end 
9                end 
10  end 
11  return R 
 

e-ISSN : 0976-5166 
p-ISSN : 2231-3850 Duc-Hong Pham / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203165 Vol. 12 No. 3 May-Jun 2021 655



Algorithm 2: Potential sensitive keyword candidate selection 

Input: R: list of keyword variant pairs 
Output: C: list of keyword variants 
1 []C   

2  for each keyword v in list_keyword(R) do 
3       list_v=get_variant(v,R) 
4       r_remove=[] 
5       list_v=sorted(list_v) 
6       if len(list_v)> 1 then  
7                top=1 
8                for v1 in list_v do 
                        v_top=’’ 
9                      if top==1 then 
10                          variant_top=1 
                              v_top=v1 
11                          top=top+1 
12                    for v2 in list_v do 
13                          if len(v2)>len(v1) and v1 in v2 and cosinee(v1, keyword)==1 then 
14                               r_remove.append(variant2) 
15                         else 
16                                 if consin(v1, keyword)> consin(v2, keyword) then  
17                                     if (id of v1 in id of v2) and len(v2)>len(v1) and v1 belongs to v2 then 
18                                        r_remove.append(v2) 
19                               else if (id of v2 in id of v1) and len(v2)<len(v1) and v2 belongs to v1 then 
20                                          r_remove.append(v2) 
21                          else if len(v2)>len(v_top) and variant_top in v2 then 
22                               r_remove.append(variant2) 
23                     for variant in list_variant do 
24                         if v not in r_remove then 
25                              C.append(v) 
26      else 
27               for variant in list_variant do 
28                      C.append(variant) 
29 return C 

 

For each document d D  that is splitted into sentences 1 2{ , ,..., }ls s s , each sentence s d is made up of  

strings with 1 gram, 2 grams, and 3 grams. These strings will be used as inputs to the approximate algorithm. 
Algorithm 1 is proposed for this task, where  - is threshold for the similarity, n is the number of ngrams to 

extract the feature for each input string of the string, the output is a list R of the keyword variant pairs. The 

function n_gram creates strings with size is 1, 2, 3, 4 gram. Assume the dictionary 1 2 | |{k ,k ,...,k }KK  has 

been indexed into SimString. In line 5, SimString return variants of the input string (str) and they are saved into 
List_cadidate. In line 7, the List_cadidate is union into R. 

3.3. Potential sensitive keyword candidate selection 

To avoid omitting variations of keyword appearing on documents, the SimString algorithm uses a low 
threshold to find all possible variations, however there will be many variations of the keyword identified. So we 
propose an algorithm to re-select the most potential candidates. Our idea is based on the position of words 
appearing on the input sentence, because the n-gram formation of strings are generated words, in which a 
specific word will be considered in three cases: (i) a word as a string (1-gram); (ii) a word combines with a word 
immediately after it as a string (2-grams); (iii) a word combines with a preceding word and a word after as a 
string (3 grams). Using an original keyword matching approach to these three cases, we select only the one most 
potential string, and we consider it as a potential sensitive keyword candidate. 

A keyword can have many variants, let list_v denote a list of variations of the keyword v and we need to 
determine among those variations which is really a good variation of the keyword v. We first sort the variations 
in descending order of similarity between the keyword v and its variations. We then consider the following 
criteria: (a) If the variant v1 belongs to v2 and Cosine(v1,v) = 1 then remove v2 from the variant candidate list of 
keyword v; (b) Between two variants v1 and v2, is there v1 belongs to v2 or v2 belongs to v1 ? If so, if the 

e-ISSN : 0976-5166 
p-ISSN : 2231-3850 Duc-Hong Pham / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203165 Vol. 12 No. 3 May-Jun 2021 656



Cosine(v1,v)> Cosine(v2,v) then we remove v2 from the list of candidate variations of keyword v. (c) If 
keyword v has only 1 candidate in list_v, this candidate will obviously be selected as a potential candidate. 

We propose the Algorithm 2, which includes the necessary steps to identify potential candidates. In line 3, 
the function get_variant (v, R) is responsible for getting the candidate list of keyword v in R, line 4 initializes the 
r_remove list which will save the variants removed from list_v. In lines 15–16 which eliminates variants and 
save them to r_remove, pairs of keyword potential candidates, variants are included in the set C (lines 23-25). 
Lines 27-28 puts keywords with only one variation in the set C. 

3.4. Context-score 

This is the final task to be done in our proposed method. As mentioned, the above tasks help us detect 
keyword variations based on shape (form) and not considered the level of semantic similarity between them. For 
a semantic evaluation, the simplest and most effective way, we rely on the context of the original keyword and 
the variation keyword. 

After identifying the keyword - potential variation pairs C, to re-evaluate whether the variant is semantically 
similar or not. We use the context-score method. This method uses a context set of keywords and the context set 
of keywords' variation keywords to semantically determine whether or not the context of the keywords is similar 
or not. The variants whose context-score score compared to its original keyword reaches a given threshold will 
be selected as the actual result to be determined for the sensitive keywords detection problem. 

We propose the Algorithm 3 below which is the pseudo code needed to do the context-score calculation, for 
each keyword v in set C, in line 3 the getContext function is used to get the list of contexts for the keyword v, 
line 4 using getContext function to get list of contexts for variation of keyword v. The context-score between the 
two contexts we calculate by equation (2). The keyword-variant pair is selected to save the list X if context-
score reaches the similarity score of context  . 

Note that the context set of keywords P is identified from sentence set containing orginal keywords, these 
sentences are extracted from a product docment data. Context set of keyword variants Q is identified from 
sentence set containing keyword variants which extracted from the input document. The size of context in P and 
Q is equal. Figure 2, for an example about context: Given a sentence ‘TPU Silicone Back Cover Samsum A01’, 
we have ‘Samsum’ which is a variant of keyword ‘Samsung’, if the context window of size is 4 then variation 
‘Samsum’ has the contexts as ‘Silicone Back Cove’, and ‘Back Cover A01’. 

 

 
Figure 2. An example about context 

Algorithm 3: Sensitive keyword detection 

Input: C: list of keyword variants, P: context set of keywords, Q: context set of keyword variants,  - 

threshold for the similarity of contexts 
Output: X: list of keyword variants 

1  []X   

2   for each pair (keyword, variant) in C do 
3        Contexts=getContext(keyword, P) 
4        Context-variants=getContext(variant, Q) 
5    for Context in Contexts do 
6        for Context-variant in Context-variants do 

7            if Cosine(Context, Context-variant)>   then 

8                   X.append(keyword, variant) 
9                    break 
10 return X 
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4. Experiments 

4.1. Data set 

We use the data including 1.189.690 sentences on descriptions and titles of 300,000 products, which are 
collected from website sendo.vn, in which each sentence contains an original keyword or a keyword variant, and 
it is labeled in 0 or 1 by at least four annotators. We perform pre-processing on this data set as follows: use a 
standard stop word list to remove stop words and the words convert into lower cases. We then use the long-
matching algorithm and a dictionary of 40,659 bi-grams and 22,327 tri-grams words to tokenize for each 
sentence. Table 1 show statistical data in our experiments. 

Table 1. Evaluation data statistic 

Number of sentences 1.189.690 
Number of products 300.000 

Number of keyword pairs (including original keywords and 
keywords variants) 

280.219 

Number of keyword variant pairs (Variant only) 2.3137 

Number of keywords 753 

4.2. Charater embeddings, word embeddings, and context set 

Both Charater and word embedding play an important role in context representation. So to learn quality 
charater and word embeddings we use a data set of 30M products, which also collected from website sendo.vn 
and use continuous bag-of-words architecture Word2Vec, Fastext model of Gensim tool*. Both the Word2Vec 
and the Fastext models use the window size of context as 8, the word frequency threshold as 15 and the size of 
word vector is 50. 

Also from this data set we construct a context set for 753 keywords. To do this, for each keyword we collect 
a set of text sentences containing it, then we use a context window of size 5 to define the contexts around the 
keyword. per sentence of text that contains it. 

4.3. Experimental result 

In order to apply the approximate string matching algorithm [25] to identify keyword variation candidates, 
we use the SimString† tool with a threshold of 0.65, the number of ngram to extract the feature is 2, and a 
dictionary is indexed by 753 keywords. The method of calculating the context-score is based on word 
embedding, the representing vector of the context is calculated by the average of the vectors representing of 
words that appearing on the context. The context-score threshold is 0.60. The sensitive keyword detection 
system performs through 4 main steps, which are detailed in section 3. Table 2 below shows the 15 keyword-
variant pairs detected by the system. 

Table 2.  Top 15 pair keyword-variants of 5 keywords 

Original keyword Keyword variant Similarity score Context-score 
adidas adjdas 0.83 0.68 
adidas aadidas 0.92 0.63 
adidas addidass 0.77 0.75 
balenciaga baleciaga 0.947 0.66 
balenciaga alenciagà 0.842 0.83 
balenciaga balencia 0.889 0.72 
camera_mini camera_c2c_mini 0.846 0.88 
camera_mini camera_ezviz_mini 0.786 0.83 
camera_mini cameramin 0.94 0.69 
samsung sam_sung 0.933 0.62 
samsung samsum 0.769 0.89 
samsung sang_sung 0.75 0.91 
abbott abbot 0.909 0.63 
abbott abott 0.909 0.73 
abbott abot 0.80 0.89 

 
* https://pypi.org/project/gensim/ 
† https://pypi.org/project/simstring-pure/ 
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Through Table 2 we see that the variation keywords detected by the system all satisfy context-score > 0.60 and 
Similarity score between keyword and variation is greater than 0.65. The brand tag ‘adidas’ has the variations 
‘adjdas’, ‘aadidas’, and ‘addidass’. The original keyword 'balenciaga' has the variations ‘baleciaga’, ‘alenciagà’, 
and ‘balencia’. Meanwhile the original keyword ‘camera_mini’ has the variations ‘camera_c2c_mini’, 
‘camera_ezviz_mini’, and ‘cameramin’. ‘sam_sung’, ‘samsum’, and ‘sang_sung’ are variants of keyword 
‘samsung’. ‘abbot’, ‘abott’, and ‘abot’ are variants of the dairy brand keyword ‘abbott’.  

In order to evaluate the proposed method, we use three methods of context-score calculation: (i) base 
on word embedding; (ii) base on character embedding; (iii) character similarity. For method (i) and (ii) we use 
the formula (2), and method (iii) uses the formula (1). Two evaluation cases: (a) Overall means we evaluate on 
sentences contaning both original keywords and keyword variants; (b) Variant only means we only evaluate on 
sentences contaning keyword variants. The common metrics used for evaluation are Precision, Recall, and F1-
Score, the results achieved by each method are shown in Table 3. 

Table 3.  Compare the results of determining keywords between different context-score methods 

Context-score method Keyword Detection Case Precision Recall F1-Score 
Character similarity Overall  88.55 87.90 88.22 

Variant only 78.37 75.18 76.74 
Character embedding Overall  98.14  97.19 97.66 

Variant only 85.06 79.01 81.93 
Word embedding Overall  98.16 97.59 97.87 

Variant only 85.44 82.13 83.75 
 

We found that the method using character similarity gave worse results than the method based on character 
embedding and word embedding. This proves that the context-score calculated based on the semantic 
information of the word or character gives better results. Also, when using word embedding to calculate the 
context-score for better results when using character embedding, this proves that character level information 
does not affect context-score as much as the detect keyword results. 

The proposed method is heavily influenced by the return results of SimString, although the very low detect 
keywords threshold of 0.65 is chosen, there are still some cases where SimString can not dectect. In Table 4 we 
show 10 cases that SimString did not detect. 

Table 4. Show 10 cases that SimString did not detect 

Original keyword Keyword variant Similarity score 
adidas adidasvietnam 0.63 
Apple Applewatchband 0.53 
bioderma biodermanướctẩytrang 0.57 
yanhee bộttắmtrắngyanhee 0.52 
zara khăntắmzara 0.53 
blackberry sảnphẩmblackberrybold 0.64 
zippo hopquetzippo 0.59 
xiaomi kichsongwifixiaomi2 0.48 
bosch Boschaquatak 0.59 
chanel chanelclassic 0.63 

 
Through Table 4, we see that brand keywords like 'adidas', 'Apple', 'bioderma' fall into the 'Adidasvietnam', 

'Applewatchband', 'bioderma' variant keywords, all of which are very important variants, but SimString was 
undetectable. In a general observation, most of the cases that SimString is not detected are relatively low scores 
compared to the low keyword, and lower than the SimString search threshold. 

5. Conclusion 

In this paper, we have defined a new problem in the field of natural language processing and data science 
called Sensitive Keywords Detection, which aims at detecting variants of keyword in each textual product. This 
problem is meaningful in the process of supporting e-commerce floor managers to censor fake products, 
counterfeit products, and brand counterfeit products. A method uses approximate dictionary matching algorithm 
and context-score is proposed to solve the problem in a general way.  Through experimental results, we show that 
the proposed method is effective when using context-score based on character and word embedding. 
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In the future, we aim at studying more rules to capture the cases which the SimString algorithm fails and 
deploying a sensitive keyword detection system to use in practice with a large number of keywords. We also aim 
to use this research results in other problems, such as automatic discovery of variations of brand keywords, spell 
checking for keywords in search engine. 
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