
GREEDY LOAD BALANCING FOR
CLOUD COMPUTING FRAMEWORK

Jayanta Datta

Department of Information Technology, RCC Institute of Information Technology, Kolkata
Kolkata, West Bengal, INDIA

jayanta.datta@rcciit.org.in

Indrajit Pan

Department of Information Technology, RCC Institute of Information Technology, Kolkata
Kolkata, West Bengal, INDIA

indrajit.pan@rcciit.org.in

Abstract

Cloud computing technology helps in resource and application sharing at large scale. Load balancing or
resource sharing is one key task which controls quality of services in a cloud computing framework. This
proposed work focuses on optimal task management by scheduling through greedy resource allocation
strategy. Literature study reveals that greedy resource allocation concept is mostly unexplored in this
domain. This work relies on that to propose a task allocation schedule. Acquired schedule is also verified
with service level agreement (SLA) protocol for its validity to control quality of services. This new method
has been simulated and tested under various load scenarios and also compared with two other widely used
models. Experimental study shows promising outcome.

Keywords: Cloud computing; greedy method; job scheduling; resource management; service level
agreement.

1. Introduction

Technology enhancements are pushing individuals and organizations towards heavy dependency for computer
applications. Recent computer applications are more data centric and they require heavy computational resources
and costly peripheral devices. These computational resources and peripherals are not economically feasible to be
acquired by every organization or individual. Advent of distributed technology in computer science has convinced
for resource sharing concept. Cloud computing framework helps in that line [George and Pramila, (2021)]. Cloud
resources primarily include several large data centers, many broad scale applications and hardware infrastructures.
All these resources are virtually extended among end users round the clock through the cloud computing
technology. Normally there are three models of cloud computing. Those are private cloud, public cloud and hybrid
cloud. Hybrid cloud is a mix of private and public cloud [Hu et al., (2012)]. Public cloud model is the most widely
used and challenging model among these. Majority of people using computer and mobile devices are largely
dependent upon cloud data centers. Cloud service level agreement (SLA) provides an initial understanding
between cloud service providers and end users upon different subscription terms.

Resource allocation and scheduling of different incoming job requests to various virtual resource centers are one
of the major components of cloud computing [Dutta and Joshi, (2011)]. Different infrastructures, data storage
servers, and hardware devices are virtually extended as resources through several virtual machines. Service level
agreements monitors this sharing strategy across several cloud service subscribers. This sharing or resource
allocation is mostly performed through two mechanisms called static allocation and dynamic allocation [Li,
(2009)]. Active resource allocation is needed for dynamic scheduling based on the availability of resources.

Proposed work employs greedy scheduling mechanism for optimal allocation of resources. Sometimes it has been
observed in the literature that best fit allocation is simply not the best due to non standard behavior of some virtual
units and sudden break down at some sites. Literature study also reveals that performance of most of the virtual
machines gradually degrade at higher utilization. Quite often it has been observed that in a public cloud
framework, many virtual servers are lying underutilized where as some of the virtual sites are overloaded with the

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 735

task requests. In this work all such issues have been taken care of. Some of salient features of this proposed model
are;

(1) Deploying greedy load balancing mechanism for resource scheduling among different incoming requests

which are considered as job here.
(2) Dynamically applying an allocation threshold for each virtual machine (termed as resource here) based on

incoming job requests.
(3) Verification and validation of final schedule with service level agreement to ensure that each task (or job)

will be completed within a given time frame and that will not violate the commitment of service level
agreement.

This greedy method has been simulated and tested under various load scenarios. Also it has been compared with
two other widely used models called round robin scheduling and random scheduling. Comparative performance
is quite encouraging in terms of task throughput and percentage of successful completion.

Remaining part of this article is organized as in the section 2 various state of the art research works have been
discussed which are followed by the extensive discussion on proposed greedy model in section 3. Section 4
presents results and analysis of this new method and finally the conclusion and future scope appears in section 5.

.

2. Review of Literature

Some prominent research works on load balancing and job scheduling in cloud computing environment have been
reviewed thoroughly to understand the present state of the research and progress in this domain. This section will
illustrate those reviews briefly and finally this will try to draw the motivation for this new proposal made in this
article.

A priority based task scheduling algorithm is proposed in the work of [Agarwal and Jain, (2014)]. Initially data
center brokers find the availability of requested resource and its present load whenever it receives an incoming
request. Priority scheduler decides the importance of the request based on its frequency and span. Thus it assigns
a priority to every request and based on the priority the requested resource is assigned to the task. This work also
presents a comparative analysis of this priority scheduler with traditional First Come First Serve (FCFS) and
Round Robin scheduling mechanisms. Comparative analysis shows superiority of priority scheduler over FCFS
and round robin scheduling mechanisms.

Another work published by [Benoit et al., (2008)] has discussed a concept of bag of tasks. In this bag of tasks
method, scheduler receives a bucket full of tasks of different nature. Some of the tasks are unique and sequential
and some are parallel and uniform in nature. Sequential tasks have to be scheduled one after another following
the defined sequence protocol however the parallel tasks can be scheduled in parallel as those are independent
and necessarily need not to wait for another task to complete. If requisite resources are available then these tasks
can be assigned over same time span. This bag of tasks concept attempts to reduce overall execution completion
time.

[Chang et al., (2012)] addresses resource distribution and job scheduling across a collection of heterogeneous
systems connected over a grid. An adaptive scoring based mechanism is the underlying principle of this proposed
method. The authors have commented that traditional first come first serve methodology is not adequately suitable
for heterogeneous collection of resources. It takes a snap of real time resource scenario to make the decision on
scheduling and allocation to enhance the throughput of the system. It has considered both computing intensive
and data intensive jobs for scheduling. Once a job is submitted it computes scores of each resource cluster based
on its transmission efficiency and computing efficiency. Each cluster performs a local update based on the past
allocations and ongoing allocations. Additionally, a perception of global cluster update is there to study the mutual
compatibility and availability among the clusters. Proposed method has been compared with an ACO based
scheduling [Xu et al., (2003)] and most fit fast task scheduling [Wang et al., (2005)].

Another priority based job scheduling concept is proposed by [Ghanbari and Othman, (2012)]. Basically this
method has been proposed as multi criteria decision making problem based on analytical hierarchical process.
Hierarchical process follows three levels as (i) objective level, (ii) attributes level and (iii) alternative level.
Objective level performs scheduling, attribute level holds resources and alternative level manages jobs. Once the
resource requests appear, scheduler assesses the priority of jobs and then performs assignment.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 736

[Kaleeswaran et al., (2013)] proposes a dynamic scheduling mechanism for data based on genetic algorithm. This
proposed process accepts job requests and passes those requests to scheduler for resource allocation. During
resource allocation phase, all possible combinations of solution pairs are generated and the best fit solution is
chosen for scheduling.

A multi-objective task scheduling through throughput optimization has been proposed by [Lakra and Yadav,
(2015)]. Authors have conceptualized different parameters like user bandwidth, cost of processing and execution
time as multiple objective criteria for scheduling to optimize the job completion per unit time. Proposed method
uses non-dominated sorting [Zhao et al., (2011)] to solve multi-objective problem. Virtual machines are sorted in
the order of high to low quality of service metric based on these multiple objectives. Accordingly all incoming
jobs are allocated with resources from different virtual machines.

A survey article by [Mishra et al., (2020)] on load balancing techniques in cloud computing provides an in depth
insight to the domain of this discussion. Primarily authors have segregated load balancing algorithms in to two
parts as static allocation and dynamic allocation. Static allocation only focuses on two factors, initial task arrival
and availability of resources whereas dynamic strategy engulfs the challenge of run time allocation through virtual
machine provisioning. These dynamic strategies based on different heuristics are further classified as off-line
mode scheduler which is specifically batch allocation and another is online mode scheduler. Popular off line
mode scheduler discussed here are sufferage method, max-min method and min-min method where as among the
online mode scheduler opportunistic load balancer, minimum execution time (MET) method, minimum
compilation time (MCT) method, simulated annealing, genetic algorithm, tabu search and A* search method have
been discussed.

A sustainable task scheduling strategy has been presented in the article by [Mukherjee et al., (2021)]. This method
reduces makespan time and task completion time of virtual machines through heuristic load balancing algorithm.
It selects the best fit virtual machine from the pool to envisage proper resource utilization before scheduling.
Authors have used raspberry pi as cloudlet simulator and android application as edge units.

Different particle swarm optimization (PSO) based mechanisms for scheduling has been reported in [Pradhan et
al., (2021)]. Different PSO mechanisms discussed in this article are standard PSO, jumping PSO, learning PSO,
bi-objective PSO, multi-objective PSO, modified PSO, binary PSO, hybrid PSO and parallel PSO. All these PSO
mechanisms for load balancing are compared in terms of virtual machine’s makespan, throughput and execution
time. Some additional parameters like energy utilization, reliability and scalability have been discussed in
applicable cases.

[Sagar and Bhambhu, (2012)] discussed different load balancing algorithms and their performances for cloud
computing framework. Different load balancers discussed here are random method, round robin method, weighted
round robin method and dynamic round robin method. Another survey appears in [Shafiq et al. (2021)]. It
discusses throttled algorithm, equally spread current execution method, round robin method, weighted round robin
method, honey-bee method and genetic algorithm for load balancing in cloud computing to ensure quality of
services (QoS) parameters of different virtual machines in cloud computing framework.

[Tong et al., (2021)] discusses the constraint of service level agreement during dynamic load balancing for cloud
computing. Here the upcoming task is first dynamically allocated to an available virtual machine and then that
allocation is cross verified with service level agreement for deadline constraint. After proper cross verification
and validation the scheduling of a task gets approval.

Another genetic algorithm inspired load balancing mechanism has been explained in the work of [Vanitha and
Marikkanu, (2017)]. Authors have implemented one cost function model for each virtual machines based on CPU
availability and transmission bandwidth. This cost function model helps to choose best fit virtual machine for
allocation of the task. [Varalakshmi et al., (2011)] has rendered a concept of workflow optimized scheduling.
They have focused on the nature of tasks like whether the incoming task is independent or dependent. Workflow
scheduling is performed first to overcome inter task resource acquisition competition which is finally resolved
through a proper task scheduling for resources. [Xu et al., (2011)] proposed a new concept of scheduling with the
help of Berger model of justice in social distribution. It performs scheduling in two phases, in the first phase it
ensures several quality of service parameters are taken care of during scheduling and second phase ensures fair
resource allocation.

Apart from these articles there are many other articles which discuss job scheduling, load balancing and resource
allocation. It is understood so far that the key requirements of a good scheduling algorithm are enhanced

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 737

throughput of the system, reduced resource rejection and a good makespan metric across all virtual machines. In
order to design a powerful scheduling algorithm one must not overlook the computational complexity of the
proposed method. Above reviewed articles mostly relate to the dynamic scheduling mechanisms. Optimal
resource distribution should be a major criterion during dynamic scheduling. Also the scheduling constraint must
be verified through service level agreement. Role of service level agreement has been mostly overlooked in
literature. [Tong et al., (2021)] has recently kept the scope of service level agreement in their proposal for the
validation. Thus there remains a profound need for exploring optimal scheduling strategy under the validation
measure of service level agreement. Proposed work has attempted to address optimality issues through the greedy
concept which is mostly overlooked in this domain under the adherence of service level agreements.

3. Proposed Greedy Load Balancing Mechanism

Task scheduling is one of the major load balancing aspects in cloud computing framework. It becomes more
relevant for the public cloud system. It is important to improve the efficacy of overall infrastructure in terms of
throughput. This proposed method utilizes an optimal solution strategy through greedy job scheduling mechanism.
Final allocation is verified with service level agreement for deadline validation of each task.

3.1. Greedy algorithm for load balancing in distributed cloud framework

This proposed algorithm is intended to balance work load distribution among various application servers under a
cloud server network. Here these loads are considered as different jobs (jn), where jn denotes nth job. Each job will
be associated with a burst time (bn). Burst time means the amount of CPU access (in terms of unit time cycle)
required by the respective job in cloud server. Ideally we will take m number of cloud application servers, where
sm will denote mth server.

Usually when n >> m, then balancing the total load imposed by n becomes a challenge. Optimal allocation of total
load imposed by n across m servers is the purpose of this algorithm.

This algorithm will follow a greedy allocation strategy of n jobs across m servers, so that none of the servers are
overloaded and at the same time none of them remains under-utilized.

3.2. Detail Strategy

Concept of 0/1 knapsack (above threshold) will be observed. Above threshold means, during assignment if
assigned load to jth server (sj) is x, where x < th, and burst of next kth job to be assigned is bk, then even if (x + bk)
> th, kth job will be assigned to jth server. Here threshold load is represented by th. Calculation of threshold load
is shown in pseudo code.

Logic behind this 0/1 Knapsack (above threshold) is that none of the initial servers will be left under loaded so as
to ensure no over loading at trailing servers. This allocation strategy is stable because actual capacity of each
server is much higher than threshold load (th).

3.2.1. Workflow Example of Proposed Method

Step-1: Input is taken in terms of number of jobs, burst time and the number of servers as shown in table 1.

Table 1. Incoming loads (jobs) with corresponding burst time

Let us assume three servers are allotted for the balancing, e.g. s1, s2, s3

Step-2: Then the threshold value is computed, which is max (Average burst time, Maximum burst time)

Average burst time as per table 1 = Sum of incoming burst times/ Total number of servers = 20/3
Maximum burst time = max (burst time) = 5
hence, threshold (th) = max (6, 5) = 6

Jobs Burst time
j1 3
j2 5
j3 5
j4 3
j5 4

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 738

Step-3: Sequentially jobs are taken and compared with remaining threshold capacity of each server. Initially each
server is assigned with the threshold computed in step 2. However this threshold of a specific server is updated
once a job is assigned to that server.

Step-4: Process of step 3 is repeated until all the jobs are assigned to some server.

Considering the assumption taken under table 1, five jobs are j1, j2, j3, j4 and j5 along with three servers s1, s2 and
s3.

Iteration
Job no
(Burst)

Server threshold
before allocation

Server threshold after
allocation

s1 s2 s3 s1 s2 s3

1 1 (3) 6 6 6 3 (j1) 6 6
2 2 (5) 3 6 6 0 (j1, j2) 6 6
3 3 (5) 0 6 6 0 (j1, j2) 1 (j3) 6
4 4 (3) 0 1 6 0 (j1, j2) 0 (j3, j4) 6
5 5 (4) 0 0 5 0 (j1, j2) 0 (j3, j4) 1 (j5)

Table 2. Workflow example through assignment iteration

Now according to the algorithm, the j1 and j2 will be allocated to s1, j3 and j4 will be allocated to s2, and finally the
job j5 will be allocated to s3. Step wise progress is shown in table 2.

Step-5: Proposed schedule is verified with service level agreement.

Explanation of above demonstration

1. Initially we will work for the first server which is empty, till it reaches its utmost capacity.
2. In this case burst time of j1 and j2 will be allocated to s1. Now, the server s1 will be totally occupied it.
3. Now this will work for server s2, till it reaches its limit. So now the next jobs j3 and j4 will be allocated

to s2 and s2 capacity will be reached.
4. Now, final job j5 gets allocated s3.

3.2.2. Pseudo Code of the Proposed Method

Input:
(i) A list of jobs (jn) where value of n will be user defined
(ii) Each nth job will be associated with a burst time bn
(iii) Number of application servers (m)

Output:
(i) Server wise job assignment (which job is assigned to which server)
(ii) Total burst assigned to each server
(iii) Number of overloaded servers along with their server index
(iv) Number of underloaded servers along with their server index

Pseudo Code:

i.
1

n

w i
i

t b


 , where tw is total burst assigned to the system.

ii. w
avg

t
t

m
 , where tavg is average burst assigned to system

iii.  max : ,i avgth i b t    , th is the threshold capacity of every system

iv. Initialize two m size arrays with 0, (sa) representing server allocation and (w) representing assigned
weight to that server.

v. set, k = 1 (which will take count of jobs)
vi. loop on j: 1 to m

a. if (k < n):
i. wj ← 0, where w is assigned weight on that server

ii. while (wj < th):
1. wj = wj + bk
2. saj ← jk
3. k = k + 1

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 739

b. else:
i. break

vii. loop on j: 1 to m
a. print(saj)

viii. loop on j: 1 to m
a. if (wj > th):

i. print: Overloaded (saj)
b. else:

i. print: Underloaded (saj)
ix. validate: SLA

This pseudo code formally illustrates the method as described in section 3.2.1.

4. Results and Discussion

Experimental simulation of proposed method has been carried out in python 3.6 environment and Cloudsim
simulator [Tong et al., (2012)]. Proposed greedy technique has been also compared with two very well known
mechanisms. These mechanisms are round robin scheduling and random algorithm [Mishra et al., (2020)].

Round robin process assigns task to each virtual machine following a rotational policy. It simply checks the
available resource bandwidth of the assigning virtual machine and assigns. Random algorithm is not quite
superlative but in some critical situation where a systematic flow of assignment fails then literature survey shows
that random algorithm generates excellent results. Probability of success rate under such random simulation is
quite high [Mishra et al., (2020)].

All three algorithms, i.e. proposed greedy scheduling, round robin scheduling and random scheduling algorithms
were implemented in python and those were integrated with Cloudsim simulator infrastructure. These
experimental trials were performed in two phases.

4.1. Generic scheduling trials

Ten randomly generated sequence of tasks (job) and their resource requirements were taken in to the consideration
for first phase experimentation. Also the number of virtual machines (VM) was generated randomly for each trial.
Considering this set of jobs and VMs as benchmark data, this first phase trial was executed separately for three
methods. Table 3, table 4 and table 5 show the records of this analytical study for greedy method, round-robin and
random method respectively.

Trial # Job # VM #
Greedy Method

Allocated # Failed # Success %
1 10 4 4 0 100
2 100 25 25 0 100
3 1000 231 231 0 100
4 5000 946 946 0 100
5 10000 1933 1933 0 100
6 20000 3805 3805 0 100
7 40000 5231 5231 0 100
8 80000 10000 10000 0 100
9 100000 14517 14517 0 100
10 200000 29638 29638 0 100

Table 3. Experimental trials on proposed greedy method

Trial # Job # VM #
Round-robin Method

Allocated # Failed # Success %
1 10 4 4 0 100
2 100 25 25 0 100
3 1000 231 231 0 100
4 5000 946 946 0 100
5 10000 1933 1933 0 100
6 20000 3805 3805 0 100
7 40000 5231 5231 0 100
8 80000 10000 9788 212 97.88
9 100000 14517 14190 327 97.74
10 200000 29638 28917 721 97.56

Table 4. Experimental trials on round-robin method

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 740

Trial # Job # VM #
Random Method

Allocated # Failed # Success %
1 10 4 4 0 100
2 100 25 25 0 100
3 1000 231 211 20 91.34
4 5000 946 931 15 98.41
5 10000 1933 1865 68 96.48
6 20000 3805 3732 73 98.08
7 40000 5231 5112 119 97.72
8 80000 10000 9899 101 98.99
9 100000 14517 13491 1026 92.93
10 200000 29638 28999 639 97.84

Table 5. Experimental trials on random method

Observation from above experimentation reveals that the task completeness of proposed method is very high. It
has acquired 100% success rate in all randomized trials. That proves high accuracy of the proposed method. On
the contrary, success rate of round-robin method drops a little under heavy load as observed in trial 8, 9 and 10.
Random method relative displays varying performance at different trials which is not linear in nature.

4.2. Comparative analysis

Separate trials performed on random benchmark are recorded in section 4.1 through table 3, 4 and 5. This section
gives a single snap shot of the success percentage of each method with respect to each and every trial. This
comparative study is given below through table 6.

Trial #
Success Percentage

Greedy Method Round-robin Method Random Method
1 100 100 100
2 100 100 100
3 100 100 91.34
4 100 100 98.41
5 100 100 96.48
6 100 100 98.08
7 100 100 97.72
8 100 97.88 98.99
9 100 97.74 92.93
10 100 97.56 97.84

Table 6. Comparative analysis on successful scheduling between three methods

5. Conclusion

Suitable task scheduling through load balancing is a major performance constraint in cloud computing. There are
many parameters associated with task scheduling like user bandwidth, cost of processing and execution time
which mostly control overall performance of the system. However simple and adequate allocation of virtual
machines among requesting jobs is the main concern. This work has deployed greedy job scheduling method.
Proposed allocation strategy dynamically reads the task requirements and assigns a threshold of allocation on each
virtual site. This enables even distribution of jobs across all sites. Derived schedule has been verified and validated
with service level agreement protocols to check compatibility with committed task deadlines. Experimental results
have shown that percentage of successful job completion is very high and overall through put of the system has
got better under proposed greedy method in compare to others. In future this base model technique on greedy job
scheduling can be hybridized to meet multiple criteria optimization by considering major associated parameters
like user bandwidth, cost of processing and execution time.

References

[1] Agarwal, A.; Jain, S. (2014): Efficient optimal algorithm of task scheduling in cloud computing environment. International Journal of
Computer Trends and Technology, 9(7), pp. 344 – 349.

[2] Benoit, A.; Marchal, L.; Pineau, J.; Robert, Y.; Vivien, F. (2008): Offline and online master-worker scheduling of concurrent bags-of-
tasks on heterogeneous platforms. Proc. of 2008 IEEE International Symposium on Parallel and Distributed Processing, 2008, pp. 1-8.

[3] Chang, R. S.; Lin, C-Y.; Lin, C-F. (2012): An adaptive scoring job scheduling algorithm for grid computing. Information Sciences, 207,
pp. 79 – 89.

[4] Dutta, D.; Joshi, R. C. (2011): A genetic: algorithm approach to cost based multi-QoS job scheduling in cloud computing environment.
Proceedings of the International Conference & Workshop on Emerging Trends in Technology, ICWET ,11, pp. 422 – 427.

[5] George, S. S.; Pramila, R. S. (2021): A review of different techniques in cloud computing. Materials Today: Proceedings, Article in
Press.

[6] Ghanbari, S.; Othman, M. (2012): A priority based job scheduling algorithm in cloud computing. Procedia Engineering, 50(2012),
International Conference on Advances Science and Contemporary Engineering 2012, pp. 778 – 785.

[7] Hu, Z.; Wu, K.; Huang, J. (2012): An utility-based job scheduling algorithm for current computing Cloud considering reliability
factor. Proc. of 2012 IEEE International Conference on Computer Science and Automation Engineering, 2012, pp. 296-299.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 741

[8] Kaleeswaran, A.; Ramaswamy, V.; Vivekanandan, P. (2013): Dynamic scheduling of data using genetic algorithm in cloud computing.
International Journal of Advances in Engineering & Technology, 5(2), pp. 327 – 334.

[9] Lakra, A. V.; Yadav, D. K. (2015): Multi-objective task scheduling algorithm for cloud computing throughput optimization. Procedia
Computer Science, Elsevier, 48, pp. 107 – 113.

[10] Li, L. (2009): An Optimistic Differentiated Service Job Scheduling System for Cloud Computing Service Users and Providers. Proc. of
2009 Third International Conference on Multimedia and Ubiquitous Engineering, pp. 295-299.

[11] Mishra, S. K.; Sahoo, B.; Parida, P. P. (2020): Load balancing in cloud computing: a big picture. Journal of King Saud University –
Computer and Information Sciences, 32(2020), pp. 149 – 158.

[12] Mukherjee, D.; Nandy, S.; Mohan, S.; Al-Otaibi, Y. D.; Alnumay, W. S. (2021): Sustainable task scheduling strategy in cloudlets.
Sustainable Computing: Informatics and Systems, 30 (2021), pp. 100513.

[13] Pradhan, A.; Bisoy, S. K.; Das, A. (2021): A survey on PSO based meta-heuristic scheduling mechanism in cloud computing
environment. Journal of King Saud University – Computer and Information Sciences, Article in Press.

[14] Sagar, J.; Bhambhu, L. (2012): Implementation of load balance algorithm in cloud computing. International Journal of Science and
Research, 3 (9), pp. 1684 – 1687.

[15] Shafiq, D. A.; Jhanjhi, N. Z.; Abdullah, A. (2021): Load balancing technique in cloud computing environment: A review. Journal of
King Saud University – Computer and Information Sciences, Article in Press.

[16] Tong, Z.; Deng, X.; Chen, H.; Mei, J. (2021): DDMTS: A novel dynamic load balancing scheduling scheme under SLA constraints in
cloud computing. Journal of Parallel and Distributed Computing, 149 (2021), pp. 138 – 148.

[17] Vanitha, M.; Marikkannu, P. (2017): Effective resource utilization in cloud environment through a dynamic well organized load
balancing algorithm for virtual machines. Computers and Electrical Engineering, 57 (2017), pp. 199 – 208.

[18] Varalakshmi P.; Ramaswamy A.; Balasubramanian A.; Vijaykumar P. (2011): An optimal workflow based scheduling and resource
allocation in cloud. Abraham A., Lloret Mauri J., Buford J.F., Suzuki J., Thampi S.M. (eds) Advances in Computing and
Communications. ACC 2011. Communications in Computer and Information Science, 190, pp. 411 – 420.

[19] Wang, S-De.; Hsu, I-T.; Huang, Z-Y. (2005): Dynamic scheduling method for computational grid environment. Proc. of International
Conference on Parallel and Distributed Systems, 2005, pp. 22 – 28.

[20] Xu, B.; Zhao, C.; Hu, E.; Hu, B. (2011): Job scheduling algorithm based on Berger model in cloud environment. Advances in Engineering
Software, 42(7), pp. 419 – 425.

[21] Xu, Z.; Hou, X.; Sun, J. (2003): Ant-algorithm based task scheduling in grid computing. Proc. of Canadian Conference on Electrical and
Computer Engineering, 2, pp. 1107 – 1110.

[22] Zhao, J.; Zeng, W.; Liu, M.; Li, G. (2011): Multi-objective optimization model of virtual resources scheduling under cloud computing
and it's solution. Proc. of 2011 International Conference on Cloud and Service Computing, 2011, pp. 185-190.

Authors Profile

 Jayanta Datta, is an Assistant Professor in the Department of Information Technology at
RCC Institute of Information Technology, Kolkata, India since 2018. Prior to this he was
associated with Computer Application Department in the same Institute since 2006. Jayanta
has received B. Sc. (MTMH) from The University of Burdwan in 2001. He completed MCA
in 2004 and M. Tech. in Software Engineering in 2007, both from West Bengal University
of Technology, W.B. His research interest includes SLA in Cloud Computing and Smart
contract in Blockchain Technology. He has published couple of journal and conference
publications in his credit. Currently he is pursuing his Ph. D. with Cloud Computing
specialization.

 Indrajit Pan, received his B.E. in Computer Science and Engineering with Honors from
The University of Burdwan (2005) and M. Tech. in Information Technology from Bengal
Engineering and Science University, Shibpur (2009). He was the recipient of University
Medal in his Masters. He obtained Ph.D. in Engineering from Indian Institute of Engineering
Science and Technology, Shibpur in 2015.
His current research interest includes community detection; cloud computing, influence
theory and digital microfluidic biochip. He joined RCC Institute of Information Technology
in 2006 and now the Associate Professor and Head of the Information Technology
Department.
He has research publications in different International journals, edited books and conference
proceedings. He has also coauthored some edited research volumes and international
conference proceedings. He served as guest editor in International Journal of Hybrid
Intelligence, Inderscience and currently an editorial board member of Elsevier’s Applied
Soft Computing Journal. He is now a senior member of IEEE, USA and ACM, USA.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 Jayanta Datta et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i3/211203255 Vol. 12 No. 3 May-Jun 2021 742

