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Abstract 

Crow search algorithm (CSA) is a meta-heuristic algorithm that mainly solves optimization problems. The 
weaknesses of the original CSA were its slow convergence speeds and inefficient exploitation capacity. Hence, 
this paper proposed a novel hybrid based on CSA and whale optimization algorithm (WOA), which is called 
HCSWOA for high-dimensional optimization problems. The main idea is to integrate two different algorithms’ 
strengths into a proposed algorithm that utilizes the exploration ability of CSA with the exploitation and 
convergence abilities of WOA. To enhance the performance of the original WOA and CSA, this study employed 
an adaptive inertia weight strategy to improve exploitation and exploration capacities and convergence speed. 
The proposed algorithm has been compared against the original CSA, WOA, Grey Wolf Optimizer (GWO), 
Dragonfly Algorithm (DA), Particle Swarm Optimization (PSO), Sine Cosine Algorithm (SCA), Ant Lion 
Optimization algorithm (ALO), and Differential Evolution (DE) by using twenty-three standard benchmark 
functions and a real-world engineering problem as feature selection. The proposed algorithms have been 
examined on eighteen UCI standard and two DNA microarray datasets. The experimental results have revealed 
that HCSWOA has comprehensive superiority in solving global optimization and feature selection problems, 
which proves the capability of the proposed algorithm in solving real-world engineering problems. 

Keywords: Crow search algorithm (CSA), Whale optimization algorithm (WOA), High-dimension, 
Optimization Problem, Feature selection, and Hybrid optimization. 

1. Introduction

Recently, researchers have been interested in challenging optimization problems, such as global optimization, multi-
objective optimization, and high-dimensional optimization problems. An interesting goal is to solve these problems 
with the optimal algorithm, which finds the optimal solution among all the available alternatives. The optimal 
algorithm can be divided into deterministic and stochastic optimization algorithms. The deterministic algorithms 
usually solve the problem both the same initialization set and steps are followed in order every time the algorithms 
run. This means that only one execution of each problem instance is needed. In contrast, stochastic optimization 
algorithms utilize random search to reach the optimal solution, which means the algorithm should repeat the 
executions under different conditions. However, these algorithms might end up finding the same final solutions in 
most cases. In addition, meta-heuristic algorithms (MAs) are stochastic optimization algorithms that are popular in 
solving real-world engineering problems due to their efficient performance and robustness, allowing them to find 
alternative solutions to the optimal ones for reasons of time, which have been successfully applied in different 
application domains, such as feature selection problems [1] , travel salesman problems [2], image processing [3], 
wireless sensor networks [4] etc.  
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Feature selection (FS) is a multi-objective optimization problem as a preprocessing step of the datasets, which is a 
dimensionality reduction technique for prediction [1] or classification by removing redundant and irrelevant features. 
Moreover, they also help to reduce computational time and increase classification accuracy and are successful in 
solving feature selection problems for classification tasks in different domains, such as bioinformatics [5], image 
processing [6], text mining [7], finance [8], and so on. According to the advantages of FS, many researchers emphasize 
employing MAs to solve feature selection problems, such as Particle swarm optimization(PSO) [9], Equilibrium 
Optimizer (EO) [10], Artificial bee colony algorithm(ABC) [11], and Ant colony optimizer (ACO) [12], Altruistic 
Whale Optimization Algorithm (AltWOA) [13], Sine cosine algorithm (SCA) [14], Seagull optimization algorithm 
(SOA) [15]. Feature selection can be divided into three categories: filter, wrapper, and hybrid methods [16]. To begin 
with, filter methods involve independently learning algorithms with only one iteration. Filter methods can be divided 
into two categories: univariate and multi-variate. Both of them usually give a score for each feature or group of 
features. Therefore, it is easy to rank features and select the best features between them or remove some features below 
a threshold, such as in DEFRS, a differential evolution (DE) algorithm that combines with fuzzy rough set theory [17]. 
To validate the performance of DEFRS using fourteen datasets from popular repositories, such as ionosphere, wbcd, 
sonar, hill, colon, and etc. A modified Binary Ant System (BAS) named FSCBAS was proposed [18]. The aim of 
FSCBAS was to avoid falling into local optima by estimating the correlation between the selected feature subsets and 
a new set. 
 
Wrapper methods evaluate the importance of selected feature subsets using dependently learning algorithms. In 
addition, the wrapper methods iteratively produce different candidate feature subsets in some strategies and use a 
classifier algorithm to calculate the corresponding classification accuracy. An example of this method is Binary 
Cuckoo Search [19] and IBPSO [20], which had utilized search agents and convert them into a binary vector in each 
dimension by utilizing S-shaped transfer functions to select the significant feature subsets. Whale Optimization 
Algorithm (WOA) with tournament and roulette wheel selection mechanisms in the search [21] is called WOA-T and 
WOA-R, respectively. WOA-T and WOA-R algorithms had been tested on two-DNA microarrays and eighteen UCI 
standard datasets. Then, both of them compared three meta-heuristic algorithms, namely, PSO, GA, and ALO, and 
five-filter feature selection methods. The modified binary BA with a k-means clustering algorithm was proposed in 
[22]. To validate the selected features by the proposed method, classification algorithms like decision tree induction, 
support vector machines, and Naïve Bayesian classifiers were used and tested on eight different datasets, which are 
publicly available in the UCI machine learning repository. 
 
Lastly, the combination of filter and wrapper methods is called the hybrid method. MOFOA with Fisher score, 
proposed mechanism the repository criterion for searching the feature subsets for separate populations, crowding-
distance, and binary tournament selection, which are called GSMOFOA [23]. The GSMOFOA evaluated six DNA 
microarray datasets and compared the proposed algorithm with four hybrid multi-objective methods, such as 
MOBBBO, MOPSO, NSGA-II, and MOBAT. PSO with a correlation coefficient [24] was tested on the lymphoma, 
MLL, and SRBCT datasets. The experiment results demonstrated applying to comparison performance six classifier 
algorithms, such as ELM, J48, random forest, random tree, decision stump, and genetic programming. As a result, the 
ELM classifier algorithm achieved the highest accuracy on the SRBCT, MLL, and lymphoma datasets, with 93.7%, 
85.6%, and 96.8%, respectively. In [25], a proposed GWO with IG was tested on two datasets, the breast and colon 
datasets. The results showed that the breast and colon datasets had the best possible classification accuracy of 94.87% 
and 95.935%, respectively. RFACO-GS is the name given to ACO combined with ReliefF in [26], which describes 
the experimental results on six DNA microarray datasets and comparisons with other algorithms such as the Fisher 
score, MIMAGA, and so on. Moreover, the results demonstrate that the RFACO-GS algorithm is very effective, with 
94% and 99.5% for the colon and lung datasets, respectively. 
 
Besides, many researchers have used CSA algorithm to solve feature selection problems for classification tasks in 
different domains, such as diseases, documents, and drugs. Furthermore, mostly modified CSA in wrapper-based 
feature selection is lacking for high-dimensional data, such as DNA microarray technology [27], which provides the 
expression profile of thousands of genes, resulting in the curse of dimensionality, and high computational execution 
is needed. An example of modified CSA in wrapped-based feature selection: CSA with a V-shaped transfer function 
helps select a feature subset and is called BCSA [28]. BCSA achieved results in terms of classification accuracy and 
selected features or subsets with a small number of features at a low computational cost.BCSA with an opposition-
based learning strategy and an improved flight length (fl) parameter of CSA is called OBL-BCSA [29]. The 
performance of the OBL-BCSA was evaluated on drug and biodegradable datasets. CSA can be combined with other 
strategies to aid in the selection of significant feature subsets, such as adaptive awareness probability (AP), dynamic 
local neighborhood search, and a global search strategy known as ECSA for a wrapper feature selection method [30]. 
The results of ECSA were evaluated on 16 UCI standard datasets and revealed that the algorithm could achieve a 
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better convergence speed and a better-quality solution. In [31], it was proposed to use the CSA with K-Nearest 
Neighbor (KNN) for document classification on the Reuters-21578, Webb, and Cade 12 datasets.  
 
In this study, we focus on crow search algorithm (CSA) as a new population-based meta-heuristic optimization 
method, and it was developed by Askazadeh et al. in 2016 [32]. The algorithm imitates the crows' behavior, in which 
a crow individual endeavors to hide the place for storing their food from other crows, who could follow them to steal 
the food. In addition, the advantages of CSA are such as easy implementation and a few control parameters. However, 
the weakness of the original CSA has slow convergence speeds and is inefficient on the exploitation capacity. So, 
many researchers attempt to improve the performance of CSA, coming up with modifications such as A modified 
crow search algorithm (MCSA) [33], which improved the exploitation capacity of CSA by adaptive adjustment of the 
flight length (fl). ICSA improved its exploration and exploitation capacities and enhanced convergence speed with 
adaptive inertia weight parameter and roulette wheel selection for multi-dimensional, linear, and nonlinear problems 
[34]. The Sine Cosine Crow Search Algorithm (SCCA) was proposed to balance between exploration and exploitation 
capacities [35], [36]. CSA with Grey wolf optimization algorithm (GWOCSA) was reported to achieve global optima 
efficiently [37]. CSA with non-inferior neighborhood search is called NICSA in which is used for balancing 
exploration and exploration capacities  [38]. The results of NICSA had shown that it attains a good search capacity, 
convergence rate, and robustness. An improved CSA (ICSA) with adaptive adjustment operator and Levy´ flight 
distribution uses the position update mechanism of crows, and it also balances the exploration and exploitation 
capabilities of CSA [39]. According to literature review, many researchers attempted to modify the CSA in various 
ways in order to improve their performance with scale problems on 30-dimensional variables and a lack of handling 
with high-dimensional data. To address the problem of CSA, this study is to fill a research gap for proposed algorithms  
for hybridization based on stochastic population-based meta-heuristic algorithms that can manipulate high-
dimensional data. 
 
hybridization techniques can aid in improving performance and attaining efficient results in optimization problems of 
MAs [40]. Talbi et al. [41] defined a hybridization technique combining several algorithms categorized as high-level 
or low-level hybrid methods. This study aims to propose an improved CSA with a combination of WOA 
by hybridization techniques because the main weakness of CSA is its exploitation capacity, which can be enhanced 
by introducing WOA components with the low-level hybrid method that embeds in CSA and the algorithms work 
together. Moreover, WOA has a stable exploitation capacity and it also convergences quickly towards the optimum 
[42]. 
 
Whale optimization algorithm (WOA) is a meta-heuristic optimization algorithm that was proposed by Mirjalili et al. 
in 2016. The algorithm mimics the social behavior of humpback whales, which is the bubble-net hunting technique. 
The performance results of WOA demonstrate that it outperforms PSO, GSA, and Fast Evolutionary Programming 
(FEP) in terms of both stable exploitation ability and rapid convergence to the optimum. An example of hybridization 
of WOA with other algorithms for enhancing the exploitation or/and exploration capacities, such as WOA with Mean 
Grey Wolf Optimizer (MGWO) for balancing exploitation and exploration abilities, avoiding both premature 
convergences and traps in local minima [43]. WOA with adaptive switching of the random walk to improve the 
exploration phase is called AWOA [44]. A hybrid WOA with modified differential evolution (MDE) is called MDE-
WOA for solving global optimization problems [45]. The MDE-WOA algorithm was proposed to enhance local 
optimum avoidance ability and exploration capacity. WOA with the Fish Swarm Algorithm (AFSA) for improving 
robustness and convergence speed. To improve the premature convergence of WOA, WOA with a symbiotic organism 
search (SOS), named WOAmM, was introduced [46]. To avoid premature convergence and enhance the ability to 
explore the flight path of WOA, known as LWOA, which was proposed [47]. 
 
The aim of this study is to propose novel algorithms by considering the strengths of CSA and WOA, which are ideal 
for hybridization and can deal with high-dimensional data to accomplish more suitable exploitation and exploration 
capacities and offer significantly better results than the conventional original algorithms. Further, the proposed 
algorithms are able to be applied to other real-world engineering problems, such as feature selection to indicate the 
significant feature for classification tasks to confront the curse of dimensionality, which takes more than 2n execution 
time to find all alternative solutions to optimal ones. As the rule of no free lunch (NFL) on meta-heuristic algorithms 
states [48], an algorithm may be successful in solving some problems, but not all of them. Therefore, this study 
attempts to modify an original CSA algorithm to encourage two differential problems, such as high-dimensional 
optimization and feature selection problems. 
 
To conclude, we will summarize the steps of this research work as follows: 1) Novel hybridization algorithms based 
on CSA and WOA have been proposed. 2) The proposed algorithm is applied to 23 benchmark function optimization 
problems with different dimensional data. 3) The proposed hybrid algorithm is employed to solve the feature selection 
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problem in the wrapper method, and the results are validated on eighteen data sets from UCI standard and DNA-
microarray datasets. 4) The proposed approach's performance is compared to that of traditional CSA, WOA, and other 
meta-heuristic algorithms such as Grey Wolf Optimizer (GWO), Dragonfly Algorithm (DA), Particle Swarm 
Optimization (PSO), Sine Cosine Algorithm (SCA), Ant Lion Optimization algorithm (ALO), and Differential 
Evolution (DE) in different metrics of performance, such as precision, recall, F-score, classification accuracy, and so 
on. 
 
The remainder of the paper is arranged as follows: Section 2 presents the related works. Section 3 presents the 
background information of CSA and WOA focussing on their inspiration and mathematical model. The proposed 
hybrid algorithm is presented in Section 4, whereas the experimental results on benchmark function optimization 
problems as well as feature selection problems are discussed in Section 5. Finally, in Section 6, we will indicate the 
conclusions and future work. 

2. Methods 

2.1 Crow search algorithm (CSA) 

Crow search algorithm (CSA) was developed by Askazadeh et al. in 2016 [32]. The algorithm imitates crows' behavior 
in that a crow individual attempts to hide a place to store their food. Moreover, the crow takes precautions to protect 
their location from other crows, who could follow them to steal the food. Therefore, the motion of each crow individual 
to protect their food has been induced by two main situations: firstly, finding the hiding place by other crows, as 
shown in Eq. (1). 

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� 𝑖𝑡𝑒𝑟 𝑓𝑙 𝑖𝑡𝑒𝑟 𝑟𝑎𝑛𝑑 �⃗� 𝑖𝑡𝑒𝑟 �⃗� 𝑖𝑡𝑒𝑟 1  

Where, p =1,2,..., NC; NC; iter =1,2 ...,itermax; NC is the flock size, that as the number of the crows; itermax is the number 
of maximum iterations. �⃗� 𝑖𝑡𝑒𝑟 1 , 𝑓𝑙 𝑖𝑡𝑒𝑟  dedicate the current location and flight length of the p-th crow 
individual at the iter-th iteration, respectively. rand() is a random number by the range of  [0,1]; Additionally, The 
food hiding place of crow r at iter-th iteration is represented by 𝑀 𝑖𝑡𝑒𝑟 .  
 
Secondly, The crow r may be aware that they are being followed by other crows as p. Therefore, the other crow r 
deceives crow p, and crow p chooses a position randomly, as shown in Eq. (2) 

�⃗� 𝑖𝑡𝑒𝑟 1 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2  

According to descriptive two motions of the crow individuals for finding other crows' food hiding place, which can 
be expressed in Eq. (3): 

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� 𝑖𝑡𝑒𝑟 𝑓𝑙 𝑖𝑡𝑒𝑟 𝑟𝑎𝑛𝑑 𝑀 𝑖𝑡𝑒𝑟 �⃗� 𝑖𝑡𝑒𝑟 , 𝑖𝑓 𝑟 𝐴𝑃 𝑖𝑡𝑒𝑟
𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3  

 Where, r dedicates a random number by the range of [0,1]; 𝐴𝑃 𝑖𝑡𝑒𝑟  is the awareness probability of the r-th crow at 
the iter-th iteration.  

2.2 Whale optimization Algorithm 

Whale optimization algorithm (WOA) is a meta-heuristic optimization algorithm that was proposed by Mirjalili et al. 
in 2016 [42]. The algorithm is inspired by the social behavior of humpback whales, which use a bubble-net hunting 
technique. The foraging behavior of humpback whales involves a special hunting method called bubble-net feeding 
method. In the step of hunting for prey, whales dive down, and then they start to create a bubble in a spiral shape 
around the prey and swim up toward the surface. Consequently, the process of WOA consists of three steps: shrinking 
the encircling prey, spiral bubble-net feeding maneuver, and searching for prey. 
 
• Shrinking Encircling prey: The mathematically model for encircling prey by the whales, they can recognize the 
location of prey and then encircle them as presented in Eq. (4) and (5). 

�⃗� 𝐶. �⃗�∗ 𝑖𝑡𝑒𝑟 �⃗� 𝑖𝑡𝑒𝑟 4  

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗�∗ 𝑖𝑡𝑒𝑟 𝐴. �⃗� 5  

 where  �⃗�∗ 𝑖𝑡𝑒𝑟 , �⃗� 𝑖𝑡𝑒𝑟  are the best position vector and the current position vector at iter-th iteration, respectively. 
Additionally, �⃗�∗ 𝑖𝑡𝑒𝑟 ,  should be updated to the best position in each iteration if there is a better solution.  
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• Spiral Bubble-net attacking method: The mathematical model for the bubble-net behavior of humpback whales is in 
the exploitation phase of WOA. A spiral equation is created between the position of whale and prey mimicking the 
helix-shaped movement of humpback whales as follows in Eq. (6): 

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� . 𝑒 . 𝑐𝑜𝑠 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 6  

 Where b is a constant for defining the logarithmic spiral shape and l is a random number in [-1,1]. 
Additionally, to update the position of the whales in the exploitation phase of WOA, that can assume a probability (p) 
of 50% to choose between the shrinking encircling prey or the spiral bubble-net attacking mechanisms. 
 
• Search for prey: The mathematical model of the search for prey is as exploration phase of WOA as shown in Eq. (7) 
and Eq. (8). 

�⃗� 𝐶. �⃗� 𝑖𝑡𝑒𝑟 �⃗� 𝑖𝑡𝑒𝑟 7  

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� 𝑖𝑡𝑒𝑟 𝐴�⃗� 8  

 Where �⃗� 𝑖𝑡𝑒𝑟  is a random position vector chosen from the current population. 
 

3. The Proposed Algorithm 

In this study, we propose a novel hybrid based on CSA and WOA by employing the advantage of WOA for enhancing 
the local search (exploitation capacity) and convergence speeds in the original CSA. However, the CSA algorithm is 
efficient in global search (exploration capacity). Thus, the proposed algorithm could be a hybrid of two advantages 
and could properly balance exploration and exploitation capacities for solving real engineering problems.  
 
The proposed algorithm consists of two steps: adaptive inertia weight (𝒊𝒏𝝎) strategy and a modified position update 
mechanism as follows: 

3.1 Adaptive inertia weight (𝒊𝒏𝝎) strategy 

To enhance the performance of both CSA and WOA algorithms, we utilize the inertia weight to improve the 
convergence speed and also control exploration and exploitation capacities in every iteration, as shown in Eq. (9).  

𝑖𝑛 𝜔 𝜔
𝑖𝑡𝑒𝑟 𝑖𝑡𝑒𝑟

2 𝑖𝑡𝑒𝑟
9  

Where: ω  and ω dedicate 0.9 and 0.4 which provide excellent results, respectively. 

3.2 Modified Position Update Mechanism 

The proposed algorithm employs the low-level hybridization of two algorithms between CSA and WOA because the 
weakness of the CSA is its convergence speed and inefficient exploitation ability. Therefore, to increase the efficiency 
of the exploration phase of the CSA in our proposed algorithm HCSWOA, the update position is calculated based on 
the inertia weight, as shown in Eq. (9), obtained so far as calculated by Eq. (10). 

�⃗� 𝑖𝑡𝑒𝑟 1 𝑖𝑛 �⃗� 𝑖𝑡𝑒𝑟 𝑓𝑙 𝑖𝑡𝑒𝑟 𝑟𝑎𝑛𝑑 𝑀 𝑖𝑡𝑒𝑟 �⃗� 𝑖𝑡𝑒𝑟 10  

In the exploitation phase of HCSWOA, we proposed four different ways to find all alternative optimal solutions by 
employing inertia weighted (𝑖𝑛 ), which is used to control the movement in each iteration to improve WOA 
algorithm's position update. Then, to update the position equation, it is modified as per the calculated inertia weights, 
as shown in Eq. (11)-(14), which are called HCSWOA1, HCSWOA2, HCSWOA3, and HCSWOA4, respectively, as 
follows: 

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� . 𝑒 . 𝑐𝑜𝑠 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛 11  

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� . 𝑒 . 𝑠𝑖𝑛 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛 𝑐𝑜𝑠 7
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
𝜋 12  

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� . 𝑒 . 𝑐𝑜𝑠 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛 𝑠𝑖𝑛 7
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
𝜋 13  

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� . 𝑒 . 𝑐𝑜𝑠 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛 0.5 𝑠𝑖𝑛 7
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
𝜋 14  
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In addition, to update the position of the our proposed algorithms HCSWOA, that can assume an awareness probability 
of the r-th crow (𝐴𝑃 ) of 80% to choose between the exploitation phase (WOA) or the exploration phase (CSA), that 
given the optimal solution. Therefore, we can conclude our proposed algorithms for high-dimensional data in 
pseudocode, as expressed in Algorithm 1. 

 
Algorithm 1: The proposed algorithm 
Set the initial values of 𝑁, 𝐴𝑃, 𝑓𝑙 , 𝑡 , , 𝑖𝑛 𝑎𝑛𝑑 𝑖𝑛  

Initialize the crow position h randomly �⃗�  
Evaluate the fitness function of each crow 𝐹𝑛 �⃗� . 
Evaluate the best fitness function from 𝐹𝑛 �⃗�  as �⃗�∗ 
Initialize the memory of search crow 𝑀 
Set t: = 1. {counter initialization}. 
While (𝑖𝑡𝑒𝑟  𝑖𝑡𝑒𝑟  number of iterations) 
     Update �⃗� , 𝑖𝑛 , A, C and �⃗�∗ 𝑡  
        for (p = 1: p   N ) do 
          Randomly choose one of crows to follow q 
          if rand 𝑟𝑎𝑛𝑑 𝐴𝑃 𝑖𝑡𝑒𝑟  then // exploitation phase 

�⃗� 𝑖𝑡𝑒𝑟 1 𝐷 . 𝑒 . 𝑐𝑜𝑠 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛  as called HCSWOA1 

�⃗� 𝑖𝑡𝑒𝑟 1 𝐷 . 𝑒 . 𝑠𝑖𝑛 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛 𝑐𝑜𝑠 7 𝜋  as called HCSWOA2 

�⃗� 𝑖𝑡𝑒𝑟 1 𝐷 . 𝑒 . 𝑐𝑜𝑠 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛 𝑠𝑖𝑛 7
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
𝜋 𝑎𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝐻𝐶𝑆𝑊𝑂𝐴  

�⃗� 𝑖𝑡𝑒𝑟 1 �⃗� . 𝑒 . 𝑐𝑜𝑠 2𝜋𝑙 �⃗�∗ 𝑖𝑡𝑒𝑟 𝑖𝑛 0.5 𝑠𝑖𝑛 7
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟
𝜋 𝑎𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝐻𝐶𝑆𝑊𝑂𝐴  

          Else // exploration phase 

�⃗� 𝑖𝑡𝑒𝑟 1  𝑖𝑛 . �⃗� 𝑖𝑡𝑒𝑟 𝑓𝑙 𝑖𝑡𝑒𝑟 . 𝑟𝑎𝑛𝑑 . 𝑀 𝑖𝑡𝑒𝑟 – �⃗� 𝑖𝑡𝑒𝑟   

          end If  
      end for 
      Check the feasibility of �⃗� 𝑖𝑡𝑒 1  
      Evaluated the new position of crow 𝐹𝑛 �⃗� 𝑖𝑡𝑒 1  
      Update the crow’s memory 𝑀 𝑖𝑡𝑒 1  
Until (𝑖𝑡𝑒  𝑖𝑡𝑒𝑀𝑎𝑥). {Termination criteria satisfied}. 
Produce the best solution 𝑀 

 

4. Experimental Results 

In this section, we choose a set of twenty-three benchmark functions for testing the ability of HCSWOA1, HCSWOA2, 
HCSWOA3, and HCSWOA4 in both exploitation and exploration capacities, as shown in [49]. Moreover, the 
benchmark functions can be divided into three groups: Functions UF1-UF7 are unimodal functions, MF1-MF6 are 
multimodal functions, and MFF1-MFF10 are fixed-dimension multimodal functions, respectively.  
 
This study was coded in MATLAB R2018a with Intel HD Graphics 6000, 1536 MB, 8 GB of memory, 1600 MHz 
DDR3, 1,6 GHz Dual-Core Intel Core i5, macOS Big Sur, and 128 GB HDD.  
 
Table 1 lists all parameter settings used in this study, such as the number of populations, the maximum number of 
iterations, and the other parameters, respectively. To examine the performance of HCSWOA1, HCSWOA2, 
HCSWOA3, and HCSWOA4; the experiment will proceed from the following aspects: The HCSWOA is compared 
with other meta-heuristic algorithms on 30 to 100-dimensional data with 500 iterations, such as CSA, PSO, GSA, 
WOA, GWO, SCA, ALO, DE, and DA [50]. These results were obtained by [42], [49], [51], and [52], respectively. 
In addition, all results are averaged over 30 independent runs in terms of average (avg.) and standard deviation (std) 
values. 
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Table 1.  The planning and control components. 

Algorithms No. of population No. of Iteration Parameters 
CSA 20, 30 500, 2000 AP = 0.1 and fl = 2  
WOA  30 500  [2,0] 
GWO 30 500 [2,0] 
GSA 30 500 G0 = 100, alpha= 20 and final = 2%  
BA 30 500 A=0.5 and r=0.5  

SCA 30 500 A=2, r1= r2= r3= r4 = rand()   
ALO 30 500 k=500  
DE 30 500 max=0.8, min = 0.8 and CR = 0.2  
DA 30 500 s=a=c   
PSO 30 500 c1=c2=1.45 and w = [0.9,0.4]  
ICSA 20, 30 500, 2000 ef =0.5, fl =2 and AP =0.1 

ICSAGWO 20, 30 500, 2000 AP = 0.2, fl = 2, 𝑖𝑛_𝑤 =0.9, 𝑖𝑛_𝑤 =0.4, and a ∈ [2,0] 
Ours proposed 20, 30 500, 2000 AP = 0.8, fl = , , 𝑖𝑛_𝑤 =0.9, 𝑖𝑛_𝑤 =0.4, =7,  [2,0]  

4.1 Experimental results: Comparison with our proposed algorithms and others Meta-heuristic algorithms 

In this section, our objective is to present the best suitable optimal solution by comparing it with the proposed 
algorithms HCSWOA1, HCSWOA2, HCSWOA3, and HCSWOA4 and other meta-heuristic algorithms, such as CSA 
and WOA algorithms, on 30, 50, and 100-dimensional data with 500 iterations. Moreover, these results were run 30 
times on each function and the best result will be highlighted in bold, as shown in Tables 2–5. 
 
The UF1-UF7 unimodal benchmark functions are to test the performance of exploration ability. The results of the 
proposed algorithm, HCSWOA4, can find optimal solutions for UF1–UF4 functions when the dimensions increase, as 
shown in the 30–100 dimensions range, meaning the performance results of HCSWOA4 can find the optimal solution 
in terms of the exploitation phase. As shown in the table, the results of HCSWOA1 are second best on UF6 and UF7 
functions.  

Table 2.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on 30D with 500 iterations 

Function 
HCSWOA1 HCSWOA2 HCSWOA3 HCSWOA4 CSA WOA 

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 
UF1 3.80E-134 2.08E-133 8.81E-141 4.82E-140 2.065E-142 1.02E-141 7.22E-150 2.54E-149 8.31E+00 3.63E+00 1.19E-73 6.44E-73 
UF2 3.85E-73 1.13E-72 9.27E-72 3.81E-71 2.1454E-76 9.32E-76 1.79E-71 9.81E-71 3.23E+00 9.08E-01 3.40E-48 1.86E-47 
UF3 1.09E-131 5.97E-131 1.01E-140 5.55E-140 2.964E-139 1.15E-138 5.68E-142 3.10E-141 3.36E+02 1.09E+02 4.80E+04 1.27E+04 
UF4 1.82E-63 9.95E-63 6.93E-67 3.74E-66 3.5735E-71 1.82E-70 1.92E-72 1.05E-71 6.54E+00 1.35E+00 4.86E+01 2.58E+01 
UF5 2.86E+01 1.11E-01 2.87E+01 1.10E-02 2.87E+01 3.99E-02 2.87E+01 1.18E-02 3.58E+02 1.49E+02 2.78E+01 3.66E-01 
UF6 1.44E-01 4.03E-02 2.61E-01 9.13E-02 2.54E-01 8.09E-02 1.93E-01 6.58E-02 8.94E+00 3.52E+00 4.49E-01 2.05E-01 
UF7 3.06E-04 2.01E-04 2.69E-04 2.40E-04 3.33E-04 3.02E-04 2.43E-04 1.91E-04 5.19E-02 2.37E-02 3.98E-03 4.74E-03 
MF1 -2.27E+03 6.30E+02 -1.98E+03 5.74E+02 -2.03E+03 4.73E+02 -2.23E+03 5.91E+02 -6.52E+03 8.54E+02 -1.03E+04 1.61E+03 
MF2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.95E+01 8.90E+00 0.00E+00 0.00E+00 
MF3 8.88E-16 1.00E-31 8.88E-16 4.01E-31 8.88E-16 4.01E-31 8.88E-16 4.01E-31 3.83E+00 7.10E-01 4.20E-15 2.46E-15 
MF4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.07E+00 2.47E-02 0.00E+00 0.00E+00 
MF5 5.45E-03 1.72E-03 1.14E-02 4.44E-03 1.15E-02 6.39E-03 8.51E-03 2.94E-03 4.06E+00 1.50E+00 1.95E-02 9.87E-03 
MF6 2.13E-01 5.02E-02 2.47E-01 6.63E-02 2.67E-01 7.99E-02 2.32E-01 7.18E-02 4.26E+00 6.39E+00 4.65E-01 2.49E-01 

Table 3.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on fixed-multimodal functions with 500 
iterations 

Function HCSWOA1 HCSWOA2 HCSWOA3 HCSWOA4 CSA WOA 
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 

MFF1 1.15E+01 2.84E+00 1.22E+01 1.62E+00 1.26E+01 1.69E-01 1.22E+01 1.61E+00 1.05E+00 2.03E-01 2.54E+00 2.62E+00 
MFF2 3.97E-04 9.62E-05 3.74E-04 6.26E-05 3.85E-04 6.80E-05 3.73E-04 5.94E-05 4.48E-04 3.32E-04 6.43E-04 3.86E-04 
MFF3 -1.03E+00 8.72E-03 -1.02E+00 1.29E-02 -1.02E+00 1.18E-02 -1.02E+00 1.06E-02 -1.03E+00 6.78E-16 -1.03E+00 6.78E-16 
MFF4 3.98E-01 6.61E-04 3.99E-01 1.58E-03 4.00E-01 2.50E-03 3.99E-01 9.48E-04 3.98E-01 1.69E-16 3.98E-01 4.84E-06 
MFF5 3.04E+00 3.52E-02 5.05E+00 6.80E+00 3.57E+00 9.46E-01 3.32E+00 4.71E-01 3.00E+00 0.00E+00 3.00E+00 7.85E-05 
MFF6 -3.86E+00 7.64E-03 -3.84E+00 2.29E-02 -3.85E+00 1.12E-02 -3.86E+00 6.74E-03 -3.86E+00 3.16E-15 -3.85E+00 1.15E-02 
MFF7 -3.26E+00 6.06E-02 -3.09E+00 1.93E-01 -3.12E+00 1.34E-01 -3.19E+00 1.19E-01 -3.31E+00 4.13E-02 -3.26E+00 9.32E-02 
MFF8 -6.30E+00 1.75E+00 -5.00E+00 3.88E-01 -6.26E+00 1.50E+00 -6.70E+00 1.76E+00 -9.07E+00 2.51E+00 -8.28E+00 2.73E+00 
MFF9 -6.00E+00 1.43E+00 -4.91E+00 3.58E-01 -6.06E+00 1.35E+00 -7.49E+00 1.92E+00 -9.07E+00 2.51E+00 -8.10E+00 2.88E+00 
MFF10 -6.59E+00 1.64E+00 -5.05E+00 8.10E-02 -6.04E+00 1.21E+00 -7.53E+00 1.76E+00 -1.02E+01 9.63E-01 -7.10E+00 3.33E+00 

Table 4.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on 50D with 500 iterations 

Function 
HCSWOA1 HCSWOA2 HCSWOA3 HCSWOA4 CSA WOA 

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 
UF1 4.05E-134 2.21E-133 2.37E-141 1.20E-140 3.24E-142 1.77E-141 7.71E-147 3.60E-146 4.17E-02 2.03E-02 2.32E-72 7.48E-72 
UF2 3.72E-71 1.65E-70 1.03E-72 5.55E-72 1.28E-76 4.93E-76 1.44E-71 7.90E-71 3.34E+00 9.24E-01 3.09E-51 7.55E-51 
UF3 1.96E-129 1.07E-128 5.25E-137 2.85E-136 1.44E-133 7.88E-133 1.53E-141 8.06E-141 1.61E+02 3.16E+01 1.98E+05 4.10E+04 
UF4 1.64E-67 7.74E-67 2.93E-74 7.94E-74 2.58E-70 1.38E-69 1.85E-77 8.17E-77 5.57E+00 1.27E+00 6.96E+01 2.18E+01 
UF5 4.85E+01 3.20E-02 4.85E+01 7.21E-03 4.85E+01 8.07E-03 4.85E+01 8.84E-03 1.27E+02 8.49E+01 4.81E+01 3.93E-01 
UF6 2.99E-01 7.21E-02 4.76E-01 1.32E-01 4.22E-01 9.54E-02 3.57E-01 7.28E-02 3.81E-02 1.23E-02 1.29E+00 4.48E-01 
UF7 1.80E-04 1.48E-04 2.05E-04 1.66E-04 2.98E-04 2.41E-04 1.98E-04 2.08E-04 5.12E-02 1.76E-02 3.03E-03 3.44E-03 
MF1 -2.84E+03 8.15E+02 -2.39E+03 6.98E+02 -2.56E+03 7.53E+02 -2.92E+03 6.46E+02 -1.09E+04 1.21E+03 -1.73E+04 2.96E+03 
MF2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.12E+01 1.28E+01 0.00E+00 0.00E+00 
MF3 8.88E-16 1.00E-31 8.88E-16 4.01E-31 8.88E-16 4.01E-31 8.88E-16 4.01E-31 4.39E+00 9.60E-01 4.44E-15 2.28E-15 
MF4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.67E-01 4.40E-02 6.60E-03 3.61E-02 
MF5 6.45E-03 1.39E-03 1.25E-02 5.87E-03 1.29E-02 6.40E-03 7.93E-03 2.42E-03 4.81E+00 1.48E+00 3.09E-02 1.35E-02 
MF6 4.51E-01 1.12E-01 4.44E-01 9.26E-02 5.65E-01 1.19E-01 4.93E-01 1.39E-01 3.67E+01 2.88E+01 1.25E+00 5.19E-01 
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Table 5.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on 100D with 500 iterations 

Function 
HCSWOA1 HCSWOA2 HCSWOA3 HCSWOA4 CSA WOA 

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 
UF1 8.90E-133 4.79E-132 6.36E-141 3.48E-140 1.20E-139 5.08E-139 7.08E-143 3.50E-142 7.84E+00 1.96E+00 8.61E-72 4.42E-71 
UF2 2.86E-71 6.92E-71 1.94E-70 1.06E-69 6.67E-73 3.53E-72 2.42E-74 1.32E-73 8.78E+00 1.57E+00 8.90E-51 3.60E-50 
UF3 1.65E-132 8.87E-132 4.56E-136 2.46E-135 3.93E-131 2.15E-130 3.25E-139 1.75E-138 1.22E+03 1.50E+02 1.03E+06 2.73E+05 
UF4 1.75E-67 9.42E-67 7.07E-71 3.82E-70 1.19E-72 4.66E-72 6.89E-72 2.67E-71 9.00E+00 1.07E+00 7.86E+01 2.36E+01 
UF5 9.80E+01 1.41E-02 9.80E+01 1.61E-02 9.80E+01 9.52E-03 9.80E+01 1.44E-02 6.63E+02 1.30E+02 9.82E+01 2.77E-01 
UF6 8.97E-01 2.06E-01 8.54E-01 1.62E-01 9.74E-01 2.26E-01 7.23E-01 1.66E-01 7.83E+00 2.06E+00 4.26E+00 1.26E+00 
UF7 3.42E-04 3.04E-04 3.22E-04 2.57E-04 3.00E-04 2.27E-04 2.08E-04 1.81E-04 1.46E-01 1.83E-02 4.04E-03 6.91E-03 
MF1 -3.66E+03 8.52E+02 -3.57E+03 1.03E+03 -3.79E+03 8.97E+02 -3.95E+03 8.66E+02 -1.94E+04 2.41E+03 -3.60E+04 5.99E+03 
MF2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.74E+01 2.05E+01 0.00E+00 0.00E+00 
MF3 8.88E-16 3.94E-31 8.88E-16 4.01E-31 8.88E-16 4.01E-31 8.88E-16 4.01E-31 5.31E+00 9.31E-01 4.91E-15 2.42E-15 
MF4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.06E+00 2.63E-02 1.05E-02 5.76E-02 
MF5 1.03E-02 2.66E-03 1.26E-02 6.37E-03 1.23E-02 5.19E-03 8.60E-03 3.01E-03 5.30E+00 9.95E-01 4.30E-02 1.61E-02 
MF6 1.22E+00 2.23E-01 1.02E+00 2.00E-01 1.15E+00 2.58E-01 1.17E+00 2.97E-01 1.16E+02 1.77E+01 3.01E+00 9.18E-01 

Table 6.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on 30D with 500 iterations 

Functions  PSO GSA GWO ABC SCA DA ALO DE HCSWOA_4

UF1 
AVG 5.21E-06 4.41E-15 1.67E-27 5.33E+00 3.49E-11 1.65E+01 8.13E-09 5.43E-04 7.22E-150 
STD 2.42E-05 2.67E-15 3.14E-27 1.16E+00 1.85E-10 2.58E+01 3.91E-09 1.67E-04 2.54E-149 

UF2 
AVG 6.39E-02 2.31E-02 9.79E-17 2.89E+01 3.46E-09 1.74E+00 5.03E-01 2.53E-03 1.79E-71 
STD 1.25E-01 9.25E-02 5.97E-17 1.66E+01 8.23E-09 9.09E-01 9.16E-01 4.35E-04 9.81E-71 

UF3 
AVG 9.36E+01 9.48E+02 4.92E-06 5.37E+04 3.37E-02 3.22E+02 4.01E-02 2.95E+04 5.68E-142 
STD 1.23E+02 3.08E+02 9.46E-06 7.37E+03 1.68E-01 8.12E+02 1.02E-01 4.46E+03 3.10E-141 

UF4 
AVG 2.32E+00 6.32E+00 7.05E-07 5.20E+01 1.14E-03 2.91E+00 2.75E-03 1.29E+01 1.92E-72 
STD 1.25E+00 2.22E+00 7.34E-07 4.12E+00 4.00E-03 2.14E+00 4.23E-03 1.44E+00 1.05E-71 

UF5 
AVG 3.94E+01 9.34E+01 2.69E+01 1.22E+05 7.48E+00 1.67E+03 1.57E+02 1.63E+02 2.87E+01 
STD 2.96E+01 9.16E+01 7.08E-01 5.35E+04 3.28E-01 3.24E+03 3.83E+02 4.45E+01 1.18E-02 

UF6 
AVG 1.30E-06 1.37E+01 7.73E-01 4.89E+00 3.96E-01 1.04E+01 8.41E-09 5.58E-04 1.93E-01 
STD 6.48E-06 2.58E+01 4.80E-01 1.41E+00 1.50E-01 1.77E+01 4.80E-09 2.18E-04 6.58E-02 

UF7 
AVG 2.88E-02 8.94E-02 2.21E-03 2.14E-01 3.84E-03 3.15E-02 2.84E-02 5.25E-02 2.43E-04 
STD 1.15E-02 3.72E-02 1.04E-03 4.86E-02 4.98E-03 2.47E-02 1.68E-02 1.11E-02 1.91E-04 

MF1 
AVG -6.53E+03 -2.67E+03 -6.15E+03 -4.17E+62 -2.11E+03 -2.73E+03 -2.39E+03 -9.44E+03 -2.23E+03 
STD 7.31E+02 5.84E+02 9.17E+02 1.02E+63 1.50E+02 3.20E+02 5.41E+02 3.74E+02 5.91E+02 

MF2 
AVG 5.87E+01 2.78E+01 3.70E+00 2.20E+02 3.59E-01 3.05E+01 2.06E+01 8.46E+01 0.00E+00 
STD 1.66E+01 6.34E+00 4.48E+00 1.35E+01 1.51E+00 1.22E+01 9.68E+00 7.75E+00 0.00E+00 

MF3 
AVG 1.66E+00 6.21E-02 1.06E-13 2.78E+00 4.29E-05 2.68E+00 3.90E-01 6.27E-03 8.88E-16 
STD 6.82E-01 2.36E-01 1.74E-14 3.37E-01 1.92E-04 1.37E+00 6.69E-01 1.30E-03 4.01E-31 

MF4 
AVG 3.07E-02 2.82E+01 2.58E-03 1.05E+00 6.56E-02 4.95E-01 2.19E-01 9.51E-03 0.00E+00 
STD 3.93E-02 6.09E+00 9.10E-03 1.04E-02 1.47E-01 2.96E-01 1.09E-01 1.04E-02 0.00E+00 

MF5 
AVG 8.99E-02 1.98E+00 6.27E-02 3.24E+04 9.86E-02 2.65E+00 2.87E+00 7.98E-05 8.51E-03 
STD 1.61E-01 1.05E+00 9.64E-02 4.82E+04 3.84E-02 2.31E+00 2.26E+00 4.03E-05 2.94E-03 

MF6 
AVG 2.50E-01 9.07E+00 5.07E-01 1.41E+05 3.56E-01 1.10E+00 3.30E-03 3.54E-04 2.32E-01 
STD 6.34E-01 6.52E+00 1.95E-01 9.52E+04 1.07E-01 2.04E+00 8.73E-03 1.26E-04 7.18E-02 

 
The MF1–MF6 multimodal benchmark functions test the performance of exploration ability. The experimental results 
of HCSWOA1 obtained the best optimum in MF2-MF6 benchmark functions. While the results of HCSWOA1 show 
that it is better than HCSWOA4 in terms of exploitation ability, in terms of exploitation capacity, HCSWOA4 

outperforms HCSWOA1. Finally, MFF1–MFF10 fixed-dimensional benchmark functions also test exploration 
capacity. The experimental results of the proposed algorithm, HCSWOA4, are superior to those of HCSWOA2 and 
HCSWOA3. It is clearly evident from the performance results of HCSWOA4, which imply more robustness than CSA 
and WOA when confronting high-dimensional data. 

Table 7.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on fixed-multimodal functions 

Functions  PSO GSA GWO ABC SCA DA ALO DE HCSWOA_4

MFF1 AVG 3.92E+00 5.42E+00 3.55E+00 9.98E-01 2.12E+00 1.16E+00 2.61E+00 9.98E-01 1.22E+01 
 STD 2.94E+00 3.09E+00 3.18E+00 4.52E-16 1.00E+00 5.87E-01 1.96E+00 4.52E-16 1.61E+00 

MFF2 AVG 1.18E-03 4.41E-03 3.85E-03 9.75E-04 1.10E-03 4.47E-03 2.30E-03 6.98E-04 3.73E-04 
 STD 3.65E-03 3.00E-03 7.52E-03 6.77E-05 3.60E-04 6.64E-03 4.95E-03 1.03E-04 5.94E-05 

MFF3 AVG -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.02E+00 
 STD 6.78E-16 6.78E-16 6.78E-16 6.78E-16 6.61E-05 6.78E-16 6.78E-16 6.78E-16 1.06E-02 

MFF4 AVG 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.00E-01 3.98E-01 3.98E-01 3.98E-01 3.99E-01 
 STD 1.69E-16 1.69E-16 1.99E-04 1.69E-16 2.12E-03 1.69E-16 1.69E-16 1.69E-16 9.48E-04 

MFF5 AVG 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.32E+00 
 STD 0.00E+00 0.00E+00 3.79E-05 0.00E+00 1.80E-04 1.83E-05 0.00E+00 0.00E+00 4.71E-01 

MFF6 AVG -3.84E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.85E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 
 STD 1.41E-01 3.16E-15 2.69E-03 3.16E-15 2.23E-03 1.13E-03 3.16E-15 3.16E-15 6.74E-03 

MFF7 AVG -3.29E+00 -3.32E+00 -3.26E+00 -3.32E+00 -2.87E+00 -3.24E+00 -3.27E+00 -3.32E+00 -3.19E+00 
 STD 5.54E-02 1.81E-15 8.03E-02 1.81E-15 4.15E-01 9.95E-02 6.05E-02 4.20E-04 1.19E-01 

MFF8 AVG -5.74E+00 -6.04E+00 -8.64E+00 -1.02E+01 -2.84E+00 -6.94E+00 -6.69E+00 -1.01E+01 -6.70E+00 
 STD 3.51E+00 3.68E+00 2.62E+00 0.00E+00 2.10E+00 2.73E+00 2.77E+00 1.67E-01 1.76E+00 

MFF9 AVG -6.18E+00 -1.01E+01 -1.02E+01 -1.04E+01 -2.99E+00 -7.37E+00 -7.14E+00 -1.04E+01 -7.49E+00 
 STD 3.79E+00 1.30E+00 9.63E-01 0.00E+00 1.95E+00 3.19E+00 3.45E+00 3.17E-03 1.92E+00 

MFF10 AVG -5.68E+00 -1.01E+01 -1.03E+01 -1.05E+01 -3.58E+00 -7.15E+00 -5.05E+00 -1.05E+01 -7.53E+00 
 STD 3.80E+00 1.60E+00 1.48E+00 0.00E+00 1.78E+00 3.35E+00 3.20E+00 1.83E-04 1.76E+00 
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Table 8.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on 50D with 500 iterations 

Functions  PSO GSA GWO ABC SCA DA ALO DE HCSWOA_4

UF1 
AVG 1.81E-06 3.62E+03 9.52E-20 5.09E+00 1.03E+03 8.05E+03 1.34E+01 5.59E-04 7.71E-147 
STD 9.19E-06 2.09E+03 1.08E-19 9.67E-01 1.35E+03 4.16E+03 2.77E+01 1.87E-04 3.60E-146 

UF2 
AVG 6.24E-02 2.02E+00 2.42E-12 3.12E+01 7.71E-01 3.18E+01 1.39E+02 2.66E-03 1.44E-71 
STD 8.28E-02 1.46E+00 1.41E-12 1.69E+01 8.06E-01 1.24E+01 7.08E+01 4.61E-04 7.90E-71 

UF3 
AVG 7.90E+01 3.32E+03 4.21E-01 5.37E+04 5.26E+04 6.06E+04 1.90E+04 3.17E+04 1.53E-141 
STD 9.85E+01 8.25E+02 1.04E+00 7.79E+03 1.81E+04 3.03E+04 8.13E+03 3.85E+03 8.06E-141 

UF4 
AVG 2.23E+00 1.28E+01 4.15E-04 5.16E+01 6.68E+01 4.43E+01 2.50E+01 1.33E+01 1.85E-77 
STD 9.69E-01 2.06E+00 3.78E-04 5.00E+00 8.74E+00 1.08E+01 4.20E+00 1.42E+00 8.17E-77 

UF5 
AVG 3.77E+01 1.02E+03 4.75E+01 1.29E+05 6.57E+06 4.48E+06 4.75E+03 1.55E+02 4.85E+01 
STD 2.76E+01 4.90E+02 7.17E-01 5.55E+04 8.30E+06 4.57E+06 5.77E+03 5.60E+01 8.84E-03 

UF6 
AVG 5.58E-07 6.03E+02 2.56E+00 4.84E+00 7.77E+02 7.88E+03 7.11E+00 5.98E-04 3.57E-01 
STD 2.88E-06 3.13E+02 7.18E-01 1.08E+00 9.54E+02 3.47E+03 5.53E+00 1.78E-04 7.28E-02 

UF7 
AVG 3.26E-02 4.09E-01 3.48E-03 2.13E-01 3.66E+00 3.63E+00 7.88E-01 5.17E-02 1.98E-04 
STD 1.54E-02 2.56E-01 1.55E-03 4.04E-02 3.88E+00 2.87E+00 2.24E-01 1.07E-02 2.08E-04 

MF1 
AVG -6.51E+03 -3.36E+03 -9.17E+03 -5.25E+62 -4.83E+03 -7.26E+03 -9.05E+03 -9.51E+03 -2.92E+03 
STD 7.85E+02 4.96E+02 1.18E+03 1.42E+63 2.44E+02 8.88E+02 6.41E+01 3.72E+02 6.46E+02 

MF2 
AVG 6.01E+01 5.64E+01 4.06E+00 2.21E+02 8.76E+01 3.51E+02 1.36E+02 8.60E+01 0.00E+00 
STD 2.12E+01 1.38E+01 4.93E+00 1.63E+01 5.54E+01 5.37E+01 2.65E+01 8.68E+00 0.00E+00 

MF3 
AVG 1.67E+00 1.39E+00 3.90E-11 2.84E+00 1.72E+01 1.23E+01 1.02E+01 6.40E-03 8.88E-16 
STD 7.45E-01 7.23E-01 2.54E-11 3.00E-01 6.46E+00 1.94E+00 2.95E+00 1.17E-03 4.01E-31 

MF4 
AVG 4.47E-02 1.28E+02 4.99E-03 1.04E+00 8.61E+00 6.12E+01 1.04E+00 8.54E-03 0.00E+00 
STD 5.73E-02 1.49E+01 9.53E-03 8.70E-03 1.08E+01 3.46E+01 9.87E-02 8.38E-03 0.00E+00 

MF5 
AVG 1.39E-01 3.58E+00 1.24E-01 2.52E+04 1.27E+07 5.75E+05 2.51E+01 7.12E-05 7.93E-03 
STD 2.97E-01 1.08E+00 6.43E-02 2.92E+04 1.97E+07 8.99E+05 7.71E+00 2.83E-05 2.42E-03 

MF6 
AVG 1.25E-01 4.89E+01 2.17E+00 1.45E+05 2.33E+07 4.63E+06 1.13E+02 3.67E-04 4.93E-01 
STD 3.25E-01 1.22E+01 3.26E-01 9.87E+04 3.42E+07 4.76E+06 2.17E+01 1.49E-04 1.39E-01 

 
Tables 6–9 demonstrated the best suitable optimal solution by comparing it with the proposed algorithm HCSWOA4 
and other meta-heuristic algorithms, such as CSA, PSO, GSA, WOA, ABC, GWO, SCA, ALO, DE, and DA 
algorithms on 30, 50, and 100-dimensional data with 500 iterations. As a result, our proposed algorithm outperformed 
other meta-heuristic algorithms in the UF1–UF4 and UF7 benchmark functions in terms of exploitation capacity on 
different dimension sizes (30D, 50D, and 100D). In terms of exploration ability, the experimental results of 
HCSWOA4 obtained the best optimum in MF2-MF4. However, the performance results of DE show that it is better 
than HCSWOA4 in terms of exploitation ability in MF1, MF5, and MF6 benchmark functions, but in terms of 
exploitation capacity, HCSWOA4 outperforms DE. Finally, MFF1–MFF10 fixed-dimensional benchmark functions 
also test exploration capacity. The experimental results of the proposed algorithm are superior to SCA and ALO. 

 

Table 9.  The performance comparison of proposed algorithm (HCSWOA) with other algorithms on 100D with 500 iterations 

Functions  PSO GSA GWO ABC SCA DA ALO DE HCSWOA_4

UF1 
AVG 3.69E-07 3.89E+03 1.62E-12 5.24E+00 8.36E+03 1.74E+04 4.61E+03 6.13E-04 7.08E-143 
STD 1.52E-06 8.29E+02 1.79E-12 1.42E+00 7.39E+03 9.00E+03 1.56E+03 2.36E-04 3.50E-142 

UF2 
AVG 6.34E-02 1.75E+01 3.71E-08 3.18E+01 8.71E+00 8.98E+01 1.93E+18 2.57E-03 2.42E-74 
STD 1.05E-01 5.16E+00 1.18E-08 1.65E+01 6.69E+00 4.03E+01 1.06E+19 5.82E-04 1.32E-73 

UF3 
AVG 7.51E+01 1.67E+04 6.68E+02 5.35E+04 2.41E+05 2.16E+05 8.09E+04 3.12E+04 3.25E-139 
STD 5.67E+01 7.30E+03 8.17E+02 7.44E+03 5.61E+04 7.19E+04 2.52E+04 3.43E+03 1.75E-138 

UF4 
AVG 2.47E+00 1.87E+01 8.99E-01 5.22E+01 8.92E+01 4.90E+01 3.49E+01 1.28E+01 6.89E-72 
STD 1.35E+00 1.44E+00 9.98E-01 3.07E+00 3.28E+00 8.49E+00 5.60E+00 1.61E+00 2.67E-71 

UF5 
AVG 5.18E+01 8.97E+04 9.80E+01 1.46E+05 1.23E+08 1.33E+07 8.23E+05 1.53E+02 9.80E+01 
STD 3.69E+01 4.09E+04 5.76E-01 5.15E+04 5.20E+07 8.35E+06 7.50E+05 4.81E+01 1.44E-02 

UF6 
AVG 2.23E-04 5.28E+03 9.83E+00 5.21E+00 1.12E+04 1.72E+04 5.29E+03 5.67E-04 7.23E-01 
STD 1.22E-03 1.19E+03 1.09E+00 1.28E+00 7.44E+03 9.23E+03 2.43E+03 1.62E-04 1.66E-01 

UF7 
AVG 2.90E-02 3.92E+00 7.03E-03 2.04E-01 1.28E+02 1.46E+01 4.90E+00 5.18E-02 2.08E-04 
STD 1.12E-02 2.28E+00 3.11E-03 6.05E-02 7.06E+01 8.67E+00 1.40E+00 1.27E-02 1.81E-04 

MF1 
AVG -6.37E+03 -4.80E+03 -1.62E+04 -7.60E+61 -6.76E+03 -1.05E+04 -1.81E+04 -9.35E+03 -3.95E+03 
STD 8.15E+02 8.99E+02 2.29E+03 1.41E+62 4.26E+02 1.33E+03 0.00E+00 3.04E+02 8.66E+02 

MF2 
AVG 4.93E+01 1.78E+02 1.10E+01 2.23E+02 2.50E+02 7.51E+02 3.71E+02 8.46E+01 0.00E+00 
STD 1.51E+01 2.92E+01 5.74E+00 1.57E+01 1.23E+02 1.24E+02 7.44E+01 8.12E+00 0.00E+00 

MF3 
AVG 1.60E+00 4.49E+00 1.27E-07 2.85E+00 1.98E+01 1.24E+01 1.38E+01 6.56E-03 8.88E-16 
STD 6.31E-01 7.88E-01 4.79E-08 3.78E-01 3.18E+00 2.26E+00 1.25E+00 1.09E-03 4.01E-31 

MF4 
AVG 3.59E-02 6.85E+02 4.10E-03 1.04E+00 9.39E+01 1.47E+02 3.27E+01 7.38E-03 0.00E+00 
STD 4.23E-02 3.74E+01 9.47E-03 1.00E-02 5.13E+01 8.23E+01 1.38E+01 7.66E-03 0.00E+00 

MF5 
AVG 1.04E-01 1.01E+01 2.98E-01 4.10E+04 3.39E+08 3.47E+06 4.10E+02 8.24E-05 8.60E-03 
STD 2.17E-01 2.95E+00 7.67E-02 4.22E+04 1.18E+08 2.45E+06 1.22E+03 5.30E-05 3.01E-03 

MF6 
AVG 4.86E-02 2.03E+03 6.75E+00 1.39E+05 5.28E+08 2.55E+07 1.02E+05 3.27E-04 1.17E+00 
STD 1.40E-01 2.56E+03 2.80E-01 1.17E+05 2.38E+08 2.48E+07 1.27E+05 1.18E-04 2.97E-01 

 

4.2 Experimental results: Convergence speed 

In Fig. 1, we demonstrated the convergence speed curve of UF1-UF7 and MF1- MF6 benchmark functions by 
comparing our proposed algorithm with other meta-heuristic algorithms, such as CSA and WOA algorithms, on 30-
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dimensional data with 500  iterations. The convergence speed curve reveals that our proposed algorithms can improve 
the weaknesses of the original CSA and also be quite stable to find the minimum solution to global optimization 
problems when compared with others. 

 

 
(a) The convergence speed of UF1 function (b) The convergence speed of UF2 function (c) The convergence speed of UF3 function 

  
(d) The convergence speed of UF4 function (e) The convergence speed of UF5 function (f) The convergence speed of UF6 function 

 
(g) The convergence speed of UF7 function (h) The convergence speed of MF1 function (i) The convergence speed of MF2 function 

  
(j) The convergence speed of MF3 function (k) The convergence speed of MF4 function (l) The convergence speed of MF5 function 

  

 (m) The convergence speed of MF6 function  

Fig. 1.  The comparison of the convergence speed of the proposed algorithms with other algorithms  
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4.3 Experimental results: Statistical Analysis 

In this study, we utilized the Wilcoxon rank-sum test, which is a statistical method based on nonparametric tests that 
employs the fitness value of our proposed algorithm, HCSWOA4. The test compares two algorithms or repeats 
measurements using our proposed algorithm with 5% accuracy from a pair of samples. According to the test, we used 
a confidence level of 0.95 for statistical analysis, and p-values greater than or equal to 0.05 are shown in bold, as 
expressed in Table 10.  

Table 10.  The performance comparison of proposed algorithm on wilcoxon rank sum test 30D, 50D and 100D  

 30D 50D 100D 
Functions CSA WOA CSA WOA CSA WOA 

UF1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
UF2 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
UF3 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
UF4 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
UF5 2.98E-11 5.51E-10 3.00E-11 3.98E-04 3.00E-11 2.06E-05 
UF6 3.02E-11 1.73E-07 3.02E-11 3.02E-11 3.02E-11 3.69E-11 
UF7 3.02E-11 1.07E-07 3.02E-11 9.26E-09 3.02E-11 5.19E-07 
MF1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
MF2 1.21E-12 NaN 1.21E-12 NaN 1.21E-12 NaN 
MF3 1.21E-12 1.09E-08 1.21E-12 9.84E-10 1.21E-12 3.57E-10 
MF4 1.21E-12 NaN 1.21E-12 3.34E-01 1.21E-12 3.34E-01 
MF5 3.02E-11 8.20E-07 3.02E-11 6.07E-11 3.02E-11 3.02E-11 
MF6 3.02E-11 6.36E-05 3.02E-11 2.23E-09 3.02E-11 3.82E-10 

 
In the Table, the 𝑝-value scores obtained by Wilcoxon rank-sum test with 5% accuracy from a pair of samples for two 
algorithms of 30 independent runs to test the null hypothesis for benchmark functions are summarized for different 
problem dimension sizes (30D, 50D, and 100D). Looking at the results in these tables, p-values show that there are 
significant differences between the results obtained by the CSA, WOA and the proposed HCSWOA4 for all benchmark 
problems. However, there is no significant difference between HCSWOA4 and WOA for only 2 benchmarks in the 
30D, 𝑝-value table results, only a benchmark in the 50D and 100D 𝑝-value table results. 

4.4 Experimental results: Comparison with others CSA for High-Dimensional Data Problems 

In this section, our objective is to present the best suitable optimal solution by comparing it with the proposed 
algorithm HCSWOA4 and other meta-heuristic algorithms, such as CSA, ICSA, ICSA, ICSAGWO [53] algorithms 
on 50 to 500 dimensional data with 2000 iterations. Moreover, these results were run 30 times on each function, as 
shown in Table 11-12. 

 
According to the performance of our proposed algorithm, it is able to explore the optimal results for high-dimensional 
data as the dimensions increase to 50 and 500 in both exploration and exploitation capacities. It means our proposed 
method has consistent performance with increasing dimensional data. Furthermore, the performance of HCSWOA4 
confirms that it achieves balance in two crucial search optimization problems and is robust when manipulating high 
dimensions. 

Table 11. The experimental results for 50 to 200-dimensional data.   

Function 
50 100 200 

CSA ICSA ICSAGWO HCSWOA CSA ICSA ICSAGWO HCSWOA CSA ICSA ICSAGWO HCSWOA
UF-1 4.17E-02 1.22E-27 0.00E+00 0.00E+00 7.84E+00 2.39E-27 0.00E+00 0.00E+00 1.75E+02 6.71E-28 0.00E+00 0.00E+00 
UF-2 3.34E+00 7.38E-19 0.00E+00 8.65E-282 8.78E+00 1.82E-25 0.00E+00 9.10E-288 2.47E+01 2.19E-43 1.20E-316 3.95E-289 
UF-3 1.61E+02 1.74E-26 0.00E+00 0.00E+00 1.22E+03 5.40E-26 0.00E+00 0.00E+00 5.72E+03 5.58E-27 0.00E+00 0.00E+00 
UF-4 5.57E+00 9.99E-15 1.03E-306 1.09E-292 9.00E+00 1.11E-14 1.74E-296 2.40E-289 1.13E+01 1.97E-14 8.21E-286 4.14E-290 
UF-5 1.27E+02 4.85E+01 4.78E+01 4.85E+01 6.63E+02 9.82E+01 9.82E+01 9.80E+01 3.82E+03 1.98E+02 1.98E+02 1.97E+02 
UF-6 3.81E-02 0.00E+00 5.78E+00 3.33E-01 7.83E+00 0.00E+00 1.76E+01 6.48E-01 1.76E+02 0.00E+00 4.31E+01 1.45E+00 
UF-7 5.12E-02 9.87E-05 4.61E-05 5.72E-05 1.46E-01 1.35E-04 2.75E-05 4.86E-05 4.43E-01 6.41E-05 3.16E-05 4.42E-05 
MF-2 4.12E+01 0.00E+00 0.00E+00 0.00E+00 8.74E+01 0.00E+00 0.00E+00 0.00E+00 3.23E+02 0.00E+00 0.00E+00 0.00E+00 
MF-3 4.39E+00 4.91E-15 8.88E-16 8.88E-16 5.31E+00 1.84E-15 8.88E-16 8.88E-16 5.81E+00 8.88E-16 8.88E-16 8.88E-16 
MF-4 1.67E-01 0.00E+00 0.00E+00 0.00E+00 1.06E+00 0.00E+00 0.00E+00 0.00E+00 2.58E+00 0.00E+00 0.00E+00 0.00E+00 
MF-5 4.81E+00 3.30E-02 2.84E-01 7.90E-03 5.30E+00 7.77E-02 6.82E-01 8.56E-03 5.33E+00 1.17E-02 9.17E-01 8.42E-03 
MF-6 3.67E+01 1.40E+00 3.84E+00 3.95E-01 1.16E+02 9.67E+00 9.34E+00 1.07E+00 2.25E+02 1.99E+01 1.96E+01 2.40E+00 
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Table 12. The experimental results for 500-dimensional data.   

Function CSA ICSA ICSAGWO HCSWOA
UF-1 2.31E+02 5.83E-29 0.00E+00 0.00E+00 
UF-2 4.62E+01 - 1.53E-310 2.64E-296 
UF-3 1.49E+04 9.69E+00 0.00E+00 0.00E+00 
UF-4 1.18E+01 - 7.12E-275 1.36E-295
UF-5 4.56E+03 3.00E+03 4.99E+02 4.94E+02 
UF-6 2.43E+02 7.60E-02 1.18E+02 5.04E+00 
UF-7 8.27E-01 - 4.70E-05 6.10E-05 
MF-2 8.39E+02 - 0.00E+00 0.00E+00 
MF-3 4.77E+00 5.72E+00 8.88E-16 8.88E-16 
MF-4 3.10E+00 2.04E+01 0.00E+00 0.00E+00 
MF-5 3.45E+00 - 1.09E+00 1.07E-02 
MF-6 4.75E+02 3.74E+01 4.97E+01 7.12E+00 

5. Feature Selection for HCSWOA 

Generally, feature selection (FS) is a multi-objective optimization problem that deals with high-dimensional data. In 
addition, FS is a crucial problem in the pattern recognition and machine learning areas, which is a preprocessing step 
of the datasets as dimensionality reduction techniques for prediction or classification by removing redundant and 
irrelevant features. Moreover, they also help in reducing the computational load and increasing the classification 
accuracy. The goal of FS is to strike a balance between minimizing the number of selected features and maximizing 
classification accuracy.  
 
In the search space of the FS problem, it is essential to convert the continuous search space (or the position of the 
crow individual) of HCSWOA4 to a binary version as 0 or 1. In the FS, the value of the binary vector is equal to 1, 
which means the feature is selected, whereas the value is 0, meaning the corresponding feature is unselected. In this 
way, the number of features will be reduced without affecting the classification performance. 
 
In this study, we proposed a way to achieve selecting a subset of significant features that can be divided into two 
strategies without modifying their search space, such as transfer functions and mutation operators, which are called 
HCSWOA4-V and HCSWOA4-M, respectively. In the case of the HCSWOA4-S, it utilizes the positions of the search 
agents and converts them into a binary vector in each dimension by a V-shaped transfer function, as shown in Eq. 
(15). 

𝑉 𝑋 , 𝑖𝑡𝑒𝑟
1

1 𝑋 , 𝑖𝑡𝑒𝑟
15  

Where 𝑋 , 𝑖𝑡𝑒𝑟  is the position of the p-th search agent (the crow individual) in the j-th dimension at the current 
iteration iter.  
After transformation to binary search space, the set of the best solutions or features will be selected or unselected, 
which can be calculated, as expressed in Eq. (16).  

𝑋 , 𝑖𝑡𝑒𝑟
0 𝑖𝑓 𝑟𝑎𝑛𝑑 𝑉 𝑋 , 𝑖𝑡𝑒𝑟

1 𝑖𝑓 𝑟𝑎𝑛𝑑 𝑉 𝑋 , 𝑖𝑡𝑒𝑟
16  

Where rand  [0,1] which indicates a random threshold. if 𝑋 , 𝑖𝑡𝑒𝑟  = 1 represents the value element is selected as 
a relevant attribute while where 𝑋 , 𝑖𝑡𝑒𝑟 = 0 indicates the j-th corresponding element is ignored. For example, if 

𝑋 , 𝑖𝑡𝑒𝑟 = [0.4, 0.6, 0.2, 0.7], 𝑆 𝑋 , 𝑖𝑡𝑒𝑟 = [0.5987, 0.6457, 0.5498, 0.6682], and rand = 0.63, the output of Eq. 

(16) is  𝑋 , 𝑖𝑡𝑒𝑟  = [0,1,0,1], that means the first and third features will be discarded. 
 
Then, the HCSWOA4-M employs the search agents and converts them into the binary vector in each dimension by 
Eq. (16) to select the feature subsets. Next, the mutation operator will start as follows: 
 
• The selected feature value represents 0 in the binary vector; in the mutation operator, it should be inverted to 1; 
• and, the selected feature value represents 1; therefore, the operator inverts it to 0. 
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Table 13. The characterize details of 18 UCI standard and two-DNA microarray datasets  

Dataset No.  Name No. of features No. of Samples 
D1  Breastcancer 9  699  
D2  BreastEW 30 569 
D3  CongressEW 16 435 
D4  Exactly 13 1000 
D5  Exactly2 13 1000 
D6  HeartEW 13 270 
D7  IonosphereEW 34 351 
D8  KrvskpEW 36 3196 
D9  Lymphography 18 148 
D10  M-of-n 13 1000 
D11  PenglungEW 325 73 
D12   SonarEW 60 208 
D13  SpectEW 22 267 
D14  Tic-tac-toe 9 958 
D15  Vote 16 300 
D16  WaveformEW 40 5000 
D17  WineEW 13 178 
D18  Zoo 16 101 
MD1  Colon 2000 62 
MD2  Leukemia  7129 72 

We chose eighteen datasets from the UCI standard datasets [54] and two DNA-microarray datasets to evaluate the 
performance of our proposed method. The detailed distributions of name, the number of samples, and the number of 
features for each dataset are outlined in Table 13. In this study, we apply our proposed algorithm to wrapper-based 
feature selection. It utilizes a 10-fold cross-validation method, which is used to divide the dataset into training and 
testing sets [55]. Our experiments utilize the K-Nearest Neighbor (KNN) classifier to evaluate the significant subset 
of features, and the best choice of K was at 5, which was selected as the best performing experimental result on all the 
datasets [20]. 

5.1 Fitness Function 

The fitness function is used to evaluate each solution (or position) as X. In the case of global optimization problems, 
the best solution is evaluated using the minimum fitness value, or min(f(X)) function. On the other hand, the feature 
selection problem utilizes fitness functions by combining two objectives into one by setting a weight factor for 
balancing between maximizing the classification accuracy and minimizing the number of selected features, as shown 
in Eq. (17) [21]. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝛼𝛾 𝐷 𝛽
|𝑆𝐹|
|𝑁𝐹|

17  

where 𝛾 𝐷   is the error rate of the classification accuracy of the KNN classifier. Furthermore, |𝑆𝐹|represents the 
cardinality of the selected feature subset and |𝑁𝐹|represents the total number of features in the original dataset, 𝛼 and 
𝛽 are two parameters corresponding to the importance of classification quality and selected feature subset size, 𝛼 = 
0.99 and 𝛽 = 0.01, respectively. 

Table 14. Average Acc, SF and Time by different feature selection algorithms on 18 UCI standard datasets 

DB. 
Fitness Classification Accuracy No. of Selected Features Time (minus) 

BCSA Ours-V Ours-M BCSA Ours-V Ours-M BCSA Ours-V Ours-M BCSA Ours-V Ours-M 
D1 3.51E-02 3.33E-02 3.08E-02 0.970 0.971 0.975 5.65 4.30 5.75 2.26 0.51 0.82 
D2 5.45E-02 5.31E-02 4.77E-02 0.949 0.948 0.954 11.65 3.65 5.30 2.25 0.49 0.82 
D3 4.17E-02 4.30E-02 3.78E-02 0.961 0.958 0.965 5.00 2.30 4.60 2.06 0.61 0.79 
D4 1.92E-01 2.44E-01 8.00E-02 0.814 0.757 0.924 10.85 4.30 6.05 2.39 0.50 0.89 
D5 2.41E-01 2.40E-01 2.40E-01 0.758 0.758 0.758 1.50 1.00 1.00 2.51 0.40 0.87 
D6 1.90E-01 1.78E-01 1.51E-01 0.811 0.823 0.851 4.85 4.20 4.70 2.01 0.45 0.75 
D7 1.21E-01 9.44E-02 7.64E-02 0.881 0.906 0.924 10.95 2.95 3.65 2.00 0.43 0.76 
D8 4.18E-02 6.22E-02 3.23E-02 0.967 0.941 0.973 34.15 13.20 20.90 6.29 1.15 1.64 
D9 1.65E-01 1.70E-01 1.44E-01 0.838 0.832 0.859 8.35 6.05 8.50 2.79 0.63 1.01 
D10 9.96E-02 1.18E-01 9.16E-03 0.908 0.886 0.996 11.55 6.25 6.70 2.45 0.62 0.89 
D11 1.05E-01 7.97E-02 8.39E-02 0.898 0.921 0.918 143.35 54.60 82.65 2.84 0.91 0.95 
D12 1.51E-01 1.35E-01 1.28E-01 0.852 0.867 0.875 23.90 19.90 25.95 1.95 0.59 0.74 
D13 1.90E-01 1.88E-01 1.69E-01 0.814 0.813 0.833 13.90 6.45 9.40 2.13 0.44 0.78 
D14 1.67E-01 2.04E-01 1.72E-01 0.841 0.800 0.835 9.00 5.70 7.25 2.81 0.55 0.84 
D15 5.49E-02 4.96E-02 4.47E-02 0.948 0.951 0.957 4.95 1.20 2.85 2.18 0.39 0.77 
D16 1.89E-01 1.91E-01 1.75E-01 0.818 0.812 0.830 37.80 20.50 24.65 14.33 2.12 2.62 
D17 6.14E-02 5.16E-02 4.54E-02 0.942 0.951 0.959 5.65 4.60 6.60 2.11 0.45 0.74 
D18 6.14E-02 6.72E-02 4.97E-02 0.943 0.936 0.954 8.10 6.40 7.45 2.20 0.64 0.90 
AVG 1.20E-01 1.22E-01 9.54E-02 0.884 0.879 0.908 19.51 9.31 13.00 3.20 0.66 0.98 
Rank 2 3 1 2 3 1 3 1 2 3 1 2 
Note*  Ours-V: HCSWOA4-V Ours-M: HCSWOA4-M 
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In this study, the population size is fixed to 10, whereas the number of maximum iterations is set to 100, and the results 
are averaged over 20 independent runs to achieve statistically average results. The performance of the proposed 
HCSWOA4-V and HCSWOA4-M is evaluated and compared with other meta-heuristics in terms of the average 
classification accuracy (Acc), the number of selected features (SF), fitness values (Fit), and CPU computational time 
in minutes (Time).  
 
To verify the performance of our proposed algorithms, the experiment will be conducted under the following three 
aspects: (1) HCSWOA4-V and HCSWOA4-M algorithms are compared to CSA algorithms.These results of CSA were 
obtained from . In the HCSWOA4-M, mutation ratio and mutation percentage are set as 0.1 and 0.3, respectively. (2) 
The HCSWOA-M is compared with the other meta-heuristic algorithms on 18 UCI standard datasets, such as BDA 
[56], ALO [57], GSA, SCA, PSO  [58], GA  [59], WOA, GWO [59], PIL-BOA  [28], GWOCSA [37], and WOA-
CM  [21], BCSA [28]. These results were obtained by  [55], [21], [37], [57], [60], and [61], respectively. 3) Moreover, 
The HCSWOA4-M is compared with the other meta-heuristic algorithms on two DNA-Microarray datasets (eq. colon 
and leukemia datasets), such as BCS, BBA, BPSO, BDE, BGA, WOA, CBMFSO, EBGWO, and BGWO2. These 
results were obtained by [21], [61]–[65], respectively. The population size is fixed to 10, whereas the number of 
maximum iterations is set to 100, and the results are averaged over 20 independent runs to achieve statistically average 
results.  
 
Table 14 demonstrates the results of BCSA and the proposed algorithms HCSWOA4-V and HCSWOA4-M in terms 
of fitness values, classification accuracy, selected feature size, and CPU computational time on 18 UCI standard 
datasets. The best results in the table are highlighted in bold. The experiment results of HCSWOA4-V show that it 
performs superior to other algorithms in terms of CPU computational time. In terms of classification accuracy, 
HCSWOA4-M can obtain the highest classification accuracy on 17 datasets except for D14. In addition, the fitness 
values of the HCSWOA4-M achieve minimum fitness values over 17 datasets, except for D14. Moreover, HCSWOA4-
V demonstrates superior performance by having fewer selected feature sizes than others. Overall, the average 
classification accuracy of the HCSWOA4-M is superior performance, which can prove the competency of the proposed 
algorithm efficiently to find the optima in the search space.  

Table 15. Average Acc, SF and Time by different feature selection algorithms on 18 UCI standard datasets 

DB. 
Precision Recall F-Score 

BCSA Ours-V Ours-M BCSA Ours-V Ours-M BCSA Ours-V Ours-M 
D1 0.971 0.971 0.975 0.964 0.965 0.970 0.967 0.968 0.972 
D2 0.941 0.940 0.947 0.949 0.947 0.954 0.945 0.944 0.950 
D3 0.961 0.960 0.964 0.957 0.953 0.962 0.959 0.956 0.963 
D4 0.752 0.644 0.886 0.789 0.807 0.945 0.770 0.706 0.909 
D5 0.502 0.502 0.502 0.879 0.879 0.879 0.639 0.639 0.639 
D6 0.807 0.817 0.847 0.811 0.825 0.851 0.809 0.821 0.849 
D7 0.842 0.886 0.904 0.904 0.908 0.931 0.872 0.897 0.917 
D8 0.967 0.941 0.973 0.968 0.941 0.973 0.967 0.941 0.973 
D9 0.658 0.655 0.714 0.923 0.914 0.932 0.767 0.762 0.807 
D10 0.898 0.874 0.995 0.904 0.879 0.996 0.901 0.876 0.996 
D11 0.880 0.906 0.907 0.899 0.926 0.919 0.889 0.916 0.913 
D12 0.847 0.863 0.872 0.858 0.871 0.880 0.853 0.867 0.876 
D13 0.742 0.687 0.745 0.720 0.759 0.747 0.731 0.712 0.745 
D14 0.785 0.763 0.791 0.866 0.787 0.837 0.823 0.775 0.813 
D15 0.950 0.954 0.961 0.942 0.944 0.951 0.946 0.949 0.956 
D16 0.819 0.813 0.830 0.818 0.812 0.830 0.818 0.812 0.830 
D17 0.950 0.958 0.964 0.944 0.952 0.959 0.947 0.955 0.961 
D18 0.881 0.867 0.895 0.923 0.916 0.939 0.902 0.890 0.916 

AVG 0.842 0.833 0.871 0.890 0.888 0.914 0.861 0.855 0.888 
Rank 2 3 1 2 3 1 2 3 1  

Note*  Ours-V: HCSWOA4-V Ours-M: HCSWOA4-M 
 

 
Table 15 displays the results of BCSA and the proposed algorithms HCSWOA4-V and HCSWOA4-M in terms of 
metric performances, such as precision, recall, and F-score time, on 18 UCI standard datasets. The experiment results 
of HCSWOA4-M show that it performs superiorly to other algorithms in all metrics. Therefore, we chose HCSWOA4-
M to compare with other meta-heuristic algorithms. 

 
Table 16 represents the results of WOA, ALO, PSO, GWO, GSA, BA, SCA, GA, BDA, PIL-BOA, GWOCSA, WOA-
CM, and the proposed algorithm HCSWOA-M in terms of classification accuracy on 18 UCI standard datasets. In the 
evaluation results, HCSWOA4-M performs superior to other meta-heuristic algorithms in terms of classification 
accuracy on 7 of 18 datasets, such as D1, D3, D6, D8, D10, D11, and D16. Overall, the average classification accuracy 
of HCSWOA4-M is the best efficient to find the optima is 0.908. 
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Table 16. Average classification accuracy by different feature selection algorithm on 18 UCI standard datasets  
 WOA ALO PSO GA GWO BA SCA GSA BDA PIL-BOA GWOCSA WOA-CM HCSWOA4-M 

D1 0.957 0.961 0.954 0.955 0.960 0.937 0.961 0.957 0.963 0.971 0.972 0.968 0.975 
D2 0.955 0.930 0.941 0.938 0.938 0.932 0.940 0.942 0.961 0.959 0.962 0.971 0.954 
D3 0.930 0.929 0.937 0.938 0.933 0.872 0.935 0.951 0.967 0.954 0.963 0.956 0.965 
D4 0.758 0.660 0.684 0.666 0.725 0.610 0.720 0.706 0.980 0.872 0.990 1.000 0.924 
D5 0.699 0.745 0.746 0.757 0.693 0.628 0.698 0.777 0.745 0.759 0.746 0.742 0.758 
D6 0.763 0.826 0.784 0.822 0.777 0.754 0.784 0.777 0.830 0.845 0.833 0.807 0.851 
D7 0.890 0.866 0.843 0.834 0.898 0.877 0.883 0.881 0.930 0.910 0.915 0.926 0.924 
D8 0.915 0.956 0.942 0.923 0.914 0.816 0.898 0.908 0.953 0.958 0.955 0.972 0.973 
D9 0.786 0.787 0.692 0.708 0.763 0.701 0.788 0.781 0.877 0.844 0.870 0.852 0.859 
D10 0.854 0.864 0.864 0.927 0.827 0.722 0.855 0.835 0.992 0.939 0.996 0.991 0.996 
D11 0.730 0.627 0.720 0.696 0.834 0.795 0.795 0.919 0.895 0.887 0.860 0.792 0.918 
D12 0.854 0.738 0.740 0.726 0.862 0.844 0.851 0.888 0.915 0.894 0.906 0.852 0.875 
D13 0.788 0.801 0.769 0.775 0.785 0.800 0.787 0.783 0.853 0.855 0.816 0.991 0.833 
D14 0.751 0.725 0.728 0.713 0.754 0.665 0.755 0.753 0.788 0.800 0.800 0.866 0.835 
D15 0.939 0.917 0.894 0.894 0.920 0.851 0.920 0.931 0.958 0.961 0.948 0. 939 0.957 
D16 0.713 0.773 0.761 0.767 0.710 0.669 0.704 0.695 0.750 0.808 0.729 0.785 0.830 
D17 0.928 0.911 0.950 0.933 0.948 0.919 0.957 0.951 0.980 0.983 0.982 0.959 0.959 
D18 0.965 0.909 0.834 0.884 0.953 0.874 0.931 0.939 0.958 0.974 0.969 0.980 0.954 
AVG 0.843 0.829 0.821 0.825 0.844 0.793 0.842 0.854 0.905 0.899 0.901 0.906 0.908
Rank 8 10 12 11 7 13 9 6 3 5 4 2 1 

 
Table 17 outlines the results of the algorithms in terms of the number of selected features on different runs of the 
algorithms on 18 UCI standard datasets as presented. The proposed algorithm, HCSWOA4-M, demonstrated the 
highest achieved ability to select significant variables that are smaller than those in other meta-heuristic algorithms. 
In addition, the average number of selected features of HCSWOA4-M is 13. 

Table 17 Average the number of selected features by different feature selection algorithms on 18 UCI standard datasets 

 
 

WOA ALO PSO GA GWO BA SCA GSA BDA 
PIL-
BOA 

GWOCSA 
WOA-

CM 
HCSWOA4-

M
D1 9 5.35 6.28 5.72 5.09 6.90 3.67 6.70 6.07 4.95 5.60 5.00 4.30 5.75 
D2 30 20.76 16.08 16.56 16.35 19.00 6.23 20.47 6.77 11.85 13.40 13.80 15.81 5.30 
D3 16 10.35 6.98 6.83 6.62 9.80 12.40 9.00 16.57 4.61 5.40 5.00 6.45 4.60 
D4 13 10.80 6.62 9.75 10.82 12.07 5.73 10.47 8.73 6.10 7.60 6.40 6.05 6.05
D5 13 5.75 10.70 6.18 6.18 7.53 6.07 9.00 5.10 2.70 2.40 4.60 5.25 1.00 
D6 13 8.65 10.31 7.94 9.49 8.80 5.90 8.47 6.83 6.85 6.80 5.00 6.96 4.70 
D7 34 21.45 9.42 19.18 17.31 17.33 13.40 19.07 15.40 11.49 9.20 13.00 14.42 3.65 
D8 36 27.90 24.70 20.81 22.43 31.60 15.00 30.80 19.97 17.75 16.80 18.60 18.54 20.90
D9 18 10.55 11.05 8.98 11.05 11.80 7.80 10.87 9.17 8.15 8.60 8.00 8.21 8.50
D10 13 9.80 11.08 9.04 6.83 11.27 6.17 10.67 8.47 6.05 6.00 6.40 6.01 6.70
D11 325 144.30 164.13 178.75 177.13 162.80 126.20 182.70 157.20 123.50 142.00 165.80 128.05 82.65 
D12 60 43.38 37.92 31.20 33.30 41.60 24.70 37.13 30.03 27.48 68.40 29.60 35.64 25.95 
D13 22 12.10 16.15 12.50 11.75 13.20 7.97 12.60 9.53 7.94 7.20 8.00 8.05 9.40 
D14 9 6.65 6.99 6.61 6.85 7.53 4.70 7.47 5.87 5.95 5.00 5.00 6.90 7.25 
D15 16 7.41 9.52 8.80 6.62 8.47 6.13 9.60 8.17 4.14 4.00 4.60 7.41 2.85 
D16 40 33.20 35.72 22.72 25.28 36.60 16.67 34.40 19.90 20.96 21.20 18.40 25.40 24.65 
D17 13 8.85 10.70 8.36 8.63 10.73 6.67 9.40 7.37 6.31 4.60 6.40 6.80 6.60
D18 16 9.90 13.97 9.74 10.11 12.40 6.57 9.60 8.17 5.70 7.00 5.20 6.00 7.45 
AVG  22.06 22.68 21.65 21.77 23.86 15.67 24.36 19.41 15.69 18.96 18.27 17.57 13.00 
Rank  10 11 8 9 12 2 13 7 3 6 5 4 1 

 
For the test, we used a confidence level of 0.95 for the statistical analysis of the Wilcoxon rank-sum test, and p-values 
greater than or equal to 0.05 are highlighted in bold by the results of fitness value, as demonstrated in Table 18. The 
table concluded that the p-value scores obtained by the Wilcoxon rank-sum test had 5% accuracy from a pair of 
samples for two algorithms of 20 independent runs to test the null hypothesis for UCI standard datasets. As the table 
shows, p-values reveal that there are significant differences between the results obtained by the HCSWOA4-V, BCSA, 
and the proposed HCSWOA4-M for all UCI-standard datasets. However, there is no significant difference between 
HCSWOA4-M and HCSWOA4-V for only the D5 and D11 p-value table results. 

Table 18 The performance comparison of proposed algorithm on wilcoxon rank sum test on 18 UCI standard datasets 

Algorithms 
Datasets 

D1 D2 D3 D4 D5 D6 D7 D8 D9 
HCSWOA4-V 7.11E-03 1.52E-01 1.74E-06 1.78E-03 NaN 2.20E-04 1.65E-05 1.06E-07 7.17E-04 
BCSA 6.02E-08 7.55E-07 2.82E-04 9.56E-04 3.34E-04 1.66E-06 6.68E-08 1.84E-07 7.15E-04 

 D10 D11 D12 D13 D14 D15 D16 D17 D18 
HCSWOA4-V 3.03E-05 1.64E-01 1.55E-02 4.57E-04 3.27E-05 2.70E-07 6.01E-07 3.67E-02 3.40E-03 
BCSA 4.80E-08 3.93E-07 3.07E-06 1.41E-05 9.22E-03 8.21E-07 7.66E-08 6.49E-08 1.16E-04 

    
Table 19 shows the results of BGWO, BGSA, BBA, BPSO, BDE, WOA, ALO, BGA, BGWO2, CBMFSO, EBGWO, 
BCS, and the proposed algorithm HCSWOA4-M in terms of classification accuracy, the number of selected features, 
and CPU computational time on 2 DNA-Microarray datasets. The experimentation results of the EBGWO and 
CBMFSO algorithms obtained the highest accuracy in terms of classification accuracy, namely, EBGWO algorithm 
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is 0.919 and CBMFSO algorithm is 1.0 for the colon and leukemia datasets, respectively. In the case of WOA, it can 
reduce the number of selected features as well as locate the most relevant optimal feature subsets; namely, the number 
of selected features is 12 for colon dataset and 506.16 for leukemia dataset, respectively. In addition, the proposed 
HCSWOA4-M performs superior to other algorithms in terms of CPU computational time. 
 
Interestingly, the average classification accuracy of colon and leukemia datasets of HCSWOA4-M algorithm is the 
highest achieved among other algorithms, which is 0.939. However, EBGWO and CBMFSO algorithms obtain the 
highest classification accuracy in colon and leukemia datasets, respectively. On the other hand, both EBGWO and 
CBMFSO algorithms are not stable to evaluate feature selection problems because their performances are decreasing 
in different datasets. 

 
According to Table 15 and Table 19, it seems clear that HCSWOA4-M algorithm outperformed other wrapper 
approaches across 0.908 and 0.939 for 18 UCI standard datasets and 2 DNA-Microarray datasets, respectively. In 
addition, HCSWOA4-M algorithm achieved the shortest CPU computational time for optimization across two different 
datasets. Moreover, the result of HCSWOA4-M algorithm is explicit that the proposed algorithm outperforms both 
CSA and WOA in terms of classification accuracy, the subset size of selected features, and CPU computational time. 

 

Table 19 Average Acc, SF and Time by different feature selection algorithms on 2 DNA-Microarray datasets  

Algorithm 
Dataset 

Summary 
MD1 MD2 

Acc SF CT Acc SF CT Acc SF CT 
BGWO   0.66 1042.1 - 0.8843 3663.77 - 0.772 2352.94 - 
BGSA 0.766 995.83 - 0.8435 3555.13 - 0.805 2275.48 - 
BBA 0.682 827.5 - 0.8769 827.5 - 0.779 827.5 - 
BPSO 0.839 936.5 - 0.814 3514.9 - 0.827 2225.7 - 
BDE 0.794 965.3 - 0.784 3531.2 - 0.789 2248.25 - 
WOA 0.884 12 8.68  0.963 256.64 43.99 0.924 134.32 26.34 
ALO 0.866 112 43.45 0.909 506.16 68.99 0.888 309.08 56.22 
BGA 0.878 987.3 - 0.792 3481.8 - 0.835 2234.55 - 

BGWO2 0.9 455.2 - 0.874 1805.5 - 0.887 1130.35 - 
 CBMFSO  0.667 992.42 9.52 1 3652.97 24.35 0.834 2322.7 16.94 
EBGWO 0.919 143.4 - 0.903 649.8 - 0.911 396.6 - 

BCS 0.603 1101.71 3.68  0.95 3944.35 14.16 0.777 2523.03 8.92 
HCSWOA4-M 0.911 343.9 1.39 0.966 746.4 1.53 0.939 545.15 1.46 

6. Discussion 

Statistical performance reveals our proposed algorithms can improve the weaknesses of CSA by handling high-
dimensional data. This study introduced four proposed algorithms based on CSA and WOA, such as HCSWOA1–
HCSWOA4, whose main idea is to employ the strengths across them. As the results show, the two proposed algorithms 
are superior to others; these are HCSWOA2 and HCSWOA4. In the majority of situations, the performance of the 
HCSWOA4 is superior to the standard CSA and WOA and is stable and robust as the dimensionality increases, as 
shown in Tables 2, 4, and 5. The reasons why the HCSWOA4 performs excellently and efficiently in a stable and 
robust manner are explained next. Begin with using the inertial weight to improve the convergence speed and also 
control exploration and exploitation capacities in every update position (Eq. (9)). In HCSWOA4, we proposed 
algorithms to manipulate high-dimensional data, so balancing the exploration and exploitation capacities is needed to 
increase the efficiency of the exploration phase of the CSA and the exploitation phase of the WOA. In addition, when 
𝐴𝑃  is less than 0.8, nearly half of the iterations for an updated position are used to exploit the search space, which 
aids in performing a local search; when 𝐴𝑃  is greater than 0.8, the remaining iterations are devoted to performing a 
global search. In the exploration phase, the proposed algorithms use the formula of extended CSA to update the 
position of search spaces, which may be the cause for the avoidance of stagnation in local minima. According to the 
HCSWOA4 algorithm, the mechanisms described in the preceding paragraph are the reasons why our proposed 
algorithm is advantageous for manipulating high-dimensional data by employing benchmark functions. From Section 
5.1, it is evident that the HCSWOA4 algorithm performs better than the other algorithms on most of the benchmark 
functions because of the extended CSA, WOA, and inertia weight, which provide the ability to smoothly balance 
exploration and exploitation to confront enormous dimension sizes, as shown in Tables 11 and 12. In conclusion, the 
advantages of the HCSWOA4 include performing much more lightly and conveniently and having only a few 
parameters to employ in the optimization problems, as that comparison on PSO, GSA, WOA, ABC, GWO, SCA, 
ALO, ABC, DE, and DA, as shown in Tables 6-9. 
 
The findings in Section 6 prove that the HCSWOA4 is very effective in solving feature selection problems to identify 
significant feature subsets. The results of this problem showed that the HCSWOA4 with the mutation operator 

e-ISSN : 0976-5166 
p-ISSN : 2231-3850 Artee Abudayor et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2023/v14i1/231402050 Vol. 14 No. 2 Mar-Apr 2023 270



excellent chooses the feature subsets and outperforms the other methods in different metrics, such as classification 
accuracy, precision, recall, and f-score, as shown in Tables 14–15. In addition, the strategy to select the feature subsets 
can increase the diversity of the search spaces and jump out to the global optimum to make the algorithm more 
effective. The main reason that HCSWOA4 can perform well in this type of problem is that HCSWOA4 -M performs 
other meta-heuristic algorithms that perform well in feature selection problems with different sizes of features, such 
as 9 up to 7129 features, as expressed in Tables 16–19. As shown in Tables 10 and 18, all statistical results support 
our proposed algorithm's claim that there are significant differences for both CSA and WOA on the Wilcoxon rank-
sum test. As a result of combining these two algorithms, HCSWOA4 outperforms so well in feature selection problems. 
The comprehensive study conducted here reveals that the HCSWOA4 has a stronger ability to encounter a global 
optimum, is more stable and robust than other meta-heuristic algorithms, and solves real-world engineering problems 
efficiently. 
 
To conclude, the limitation of this work is that it focuses on the strategy for choosing significant feature subsets for 
feature selection problems. In this study, we chose two strategies for selecting features: the v-shaped transfer function 
and the mutation operator. The proposed algorithm with the mutation operator is superior to other meta-heuristic 
algorithms. According to the limitation, it can be used to improve and enrich various search spaces, as well as help 
the algorithm bounce out of the local optimum for finding the significant feature subset more effectively and efficiently 
on classification tasks. Furthermore, the fitness function is a critical weight for indicating the appropriateness of 
selecting feature subsets, which are scored by balancing the number of selected features and classification accuracy. 

7. Conclusions and Future Direction  

This paper proposed a novel hybrid algorithm, HCSWOA, which is an improved crow search algorithm with whale 
optimization algorithm to solve both a high-dimensional optimization problem and a real-world optimization problem, 
such as feature selection problems. In HCSWOA, the inertia weight parameter plays a critical role in balancing 
exploration and exploitation. The performance of the proposed algorithm is tested on twenty-three standard benchmark 
functions, such as unimodal and multimodal functions. According to the evaluation results, this can significantly 
improve the HCSWOA's performance in terms of balancing exploitation and exploration and increasing the 
convergence speed for supporting high-dimensional optimization problems. Furthermore, the best HCSWOA variant 
with a mutation operator is called HCSWOA-M, which is employed as a feature selection approach and its 
performance is validated on eighteen UCI standards and two DNA-microarray datasets. The results of HCSWOA-M 
as a feature selection approach are compared against well-known feature selection methods, such as ALO, GA, PSO, 
CSA, WOA, GWO, DE, DA, BA, and PSO. The experiment results demonstrated that the comprehensive performance 
of HCSWOA is very competitive in terms of the optimal solution and classification efficiency. For future studies, 
HCSWOA can be utilized as a filter feature selection approach to evaluate the generality of the selected features. 
Moreover, HCSWOA can be applied to more efficient problems in real-life world applications, such as vehicle 
scheduling problems, knapsack problems, image thresholding problems, etc. 
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