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Abstract 

The Split-Window (SW) algorithm has been developed in order to retrieve Land Surface Temperatures 
(LST) from Thermal InfraRed (TIR) remote sensing data. In this paper, a study has been carried out using 
MODTRAN 4.0 radiative transfer code simulations using the TIR channels of the Infrared Imager 
Radiometer Suite (VIIRS) and The Advanced Very High Resolution Radiometer (AVHRR) onboard the 
National Oceanic and Atmospheric Administration (NOAA) Satellites to obtain numerical coefficients of 
the proposed algorithms. Results from validation, using the standard atmospheric simulation for various 
situations and the ground truth data sets demonstrate the applicability of the algorithm. 
A detailed analysis of the estimated total error in LST- SW, Total(Ts), shows that the algorithms are able to 
estimate accurate LST with mean value of about 1.31 K, a minimum of 1.25 K and a maximum of 1.38 K 
(with an amplitude of 0.13 K), a standard deviation of about 0.04 K and a root mean square error (rmse) 
of about 1.31 K. 

Keywords: VIIRS/JPSS-1 (NOAA-20), AVHRR/NOAA satellites, LST-SW, MODTRAN 

1. Introduction

Land Surface Temperature (LST) is one of the key parameters in the physics of land surface processes [1-5]. The 
inversion of LST from satellite data requires atmosphere-induced effects correction, mainly the absorption and 
emission of atmospheric surface emissivity and water vapor [6-21]. Surface emissivity is critical for determining 
land surface thermal radiation. Variations in atmospheric transmittance strongly depend on the dynamics of water 
vapor content in the atmospherics profile for thermal channels. The atmospheric water vapor content can be 
estimated directly from NOAA thermal channels, and transmittance will be further estimated [16]. In this work, 
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we are comparing the performance of the proposed LST-SW for NOAA-20/JPSS-1 and the NOAA (7, 9, 11, 12, 
14, 15, 16, 17, 18, 19) series LST-SW algorithms. 

2. LST Split-Window Algorithm 

The SW algorithm uses the different atmospheric absorption behavior for two thermal infrared channels within the 
10 μm and 12.5 μm window region. Many researchers have used this algorithm structure to retrieve land/sea 
surface temperature. In this paper, the SW algorithm proposed by [39/22] has been used, which takes into account 
the emissivity and water vapor effects: 
 

Ts ൌ  Ti ൅  𝐶1 ሺTi െ  Tjሻ  ൅ 𝐶2 ሺTi െ  Tjሻଶ  ൅  𝐶0 ൅ ሺ𝐶3 ൅  𝐶4 Wሻ ሺ1 െ  εሻ  ൅ ሺ𝐶5 ൅  𝐶6 Wሻ∆𝜀 
                                                                                                                                                                     (1) 
 
Ts is the surface temperature (in K) (LST-SW in hereafter), Ti and Tj are the at sensor brightness temperatures of 
the different thermal channels (in K), ε = (εI + εj) / 2 and Δε = (εi− εj) are the mean effective emissivity and the 
emissivity difference, W is the total atmospheric water vapor (in g/cm2). Finally, C0 to C6 are the SW coefficients 
to be determined from simulated data. 

3. MODTRAN 4.0 Simulations 

 
MODTRAN 4.0 radiative code is used to calculate the brightness temperatures expected at the AVHRR/NOAA 
satellites (7, 9, 11, 12, 14, 15, 16, 17, 18, 19) thermal channels 4 and 5 and VIIRS/NOAA-20 (JPSS-1) infrared 
channels M15 and M16 for different atmospheric situations. The profiles of temperature for these situations were 
obtained from the radiosoundings extracted neatly from the Television InfraRed Observation Satellite (TIROS) 
Operational Vertical Sounder (TOVS) Thermodynamic Initial Guess Retrieval (TIGR) database [23-25]. The 
calculations have been done for a large gradient of temperatures, T-5, T, T+5, T+10, and T+20, (T is the first 
boundary layer temperature of the atmosphere), five different view angles (0º, 10º, 20º, 30º and 40º), 54 
atmospheric water vapor (W) values at nadir (with, Wmin=0.15 g/cm2 and Wmax=4.65 g/cm2), and 100 
emissivities of spectral responses of several types of surfaces extracted from the Advanced Spaceborne Thermal 
Emission Reflection Radiometer (ASTER) spectral library [23-2]. 
The outputs of applying MODTRAN 4.0 radiative code are values of atmospheric parameters: atmospheric 
transmittance (τ), atmospheric downwelling radiance (Latm↓) and atmospheric upwelling radiance (Latm↑), 
obtained by mathematical convolution using filter functions of channels (i = 4, M15) and (j = 4, M16) of NOAA 
satellites (7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20/JPSS-1). 

4. VIIRS Sensor Abroad JPSS-1 (NOAA-20) 

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is aboard the NOAA’s Joint Polar Satellite 
System (JPSS) providing global observations that serve as the backbone of both short- and long-term forecasts. 
JPSS-1 is known as NOAA-20. The VIIRS thermal bands include two split window channels, M15 and M16, used 
for the LST-SW retrieval as shown in Table I. 
 
 

VIIRS JPSS-1 Wavelength (µm) Bandwidth (µm) Spatial Resolution (m) 
M15 10.763 10.26-11.26 750 

M16 12.013 11.54-12.49 750 

Table 1. VIIRS Split Window band characteristics 

5. AVHRR Sensor abroad NOAA satellite series 


The Advanced Very High Resolution Radiometer (AVHRR) instrument was carried on so many satellites as 
TIROS and NOAA series (from NOAA-6 to NOAA-19). IT is the backbone for the 1km global land cover product. 
AVHRR is a multispectral sensor with six spectral bands. 
This includes red, thermal, mid, and near-infrared bands. But over time, their spectral ranges have varied. For 
example, AVHRR/3 channel characteristics are as follows: 
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Table 2. AVHRR band characteristics 

 
 

The VIIRS/NOAA-20 satellite sensor response function is shown in Figure 1 compared to AVHRR channels 4 
and 5. 
 

 
Fig. 1. Normalized filter function of JPSS-1/NOAA-20 VIIRS infrared channels and AVHRR/NOAA satellite series. 

6. Sensitivity Analysis  

 
The LST-SW algorithm coefficients C (i = 0, 1, 2, 3, 4, 5, 6) (see Equation (1)) were obtained from the 
minimization of 135000 simulation data (54 atmospheric profiles, 5 T values, 100 emissivities, 5 view angles) 
included in the constructed database for the NOAA satellites (7, 9, 11, 12, 14, 15, 16, 17, 18, 19 and 20/JPSS-1). 
In order to quantify the impact of each error source on the LST-SW algorithm, a sensitivity analysis was carried 
out in order to examine the performance of the developed methodology under different meteorological conditions 
and land cover types. Based on the error theory, the following equation has been considered: 

𝛿்௢௧௔௟ሺ𝑇௦ሻ ൌ ට𝛿௔௟௚
ଶ ൅ 𝛿ோ∆ா

ଶ ൅ 𝛿ఌ
ଶ ൅ 𝑊                                (2)                

 
 

where δalg is the standard deviation associated with the algorithm and, δNE∆T δε and δW are the contribution 
to the total error due to the uncertainties for at-sensor temperatures, land surface emissivity and atmospheric 
water vapor, respectively, given by: 

 

 

Band Name Spectral Range (µm) Applications 
Band 1 Red 0.58-0.68 Urban, vegetation, snow/ice, daytime clouds 
Band 2 Near IR 0.725-1.00 Vegetation, land/water boundaries, snow/ice, flooding 

Band 3A Mid IR 1.58-1.64 Vegetation, snow/ice detection, dust monitoring 
Band 3B Thermal 3.55-3.93 Surface temperature, wildfire detection, nighttime clouds, 

volcanic eruptions 
Band 4 Thermal 10.30-11.30 Surface temperature, wildfire detection, nighttime clouds, 

volcanic eruptions 
Band 5 Thermal 11.5-12.50 Sea surface temperature, water vapor path radiance 
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                                                       𝛿ோ∆ா ൌ  ටቀቚ
డ ೞ்

డ ర்ቚቁ
ଶ

𝑒ଶሺ𝑇ସሻ ൅ ሺቚ
డ ೞ்

డ ఱ்ቚሻଶ𝑒ଶሺ𝑇ହሻ                                (3) 

 

                                                                 𝛿ఌ ൌ  ටቀቚ
డ ೞ்

డఌరቚቁ
ଶ

𝑒ଶሺ𝜀ସሻ ൅ ሺቚ
డ ೞ்

డఌఱቚሻଶ𝑒ଶሺ𝜀ହሻ                            (4) 

 

                                                                                   𝛿ௐ ൌ ቚ
డ ೞ்

ௐ
ቚ 𝑒ሺ𝑊ሻ                                                (5) 

 
 

Thus, assuming typical values for the different errors, e(T4, M15) = e(T5, M16) = 0.05 K, e(ε4, εM15) = e(ε5, 
εM16) = 0.01 = 1% or e(ε4, εM15) = e(ε5, εM16) = 0.005 = 0.5% and e(W) = 0.5 g/cm2. 

7. Simulation Results 

 
Table 3 compiles the LST-SW coefficients (C0 to C6) obtained from MODTRAN 4.0 radiative code simulations 
and regressions that can be used to estimate LST-SW from thermal infrared sensors of NOAA satellites (7, 9, 11, 
12, 14, 15, 16, 17, 18, 19, 20/JPSS-1). 

 
NOAA λieff λjeff C 0 C 1 C 2 C 3 C 4 C 5 C 6 

 
7 10.786 11.896 -0.029 1.651 0.292 58.0 -0.32 -118 7.73 
9 10.774 11.85 0.072 1.954 0.282 56.8 0.13 -141 11.83 
11 10.794 11.891 0.021 1.878 0.268 57.2 0.07 -132 10.31 
12 10.857 11.945 0.030 1.623 0.306 57.1 -0.08 -135 12.1 
14 10.857 11.982 0.003 1.449 0.261 58.1 -0.33 -115 8.54 
15 10.82 11.926 -0.026 1.679 0.295 57.4 -0.14 -126 9.57 
16 10.914 11.977 -0.167 1.399 0.305 57.5 -0.18 -150 16.13 
17 10.797 11.927 -0.018 1.629 0.286 57.8 -0.23 -121 8.59 
18 10.797 12.016 -0.146 1.246 1.234 58.8 -0.49 -107 7.85 
19 10.793 12.045 -0.188 1.091 0.218 59.4 -0.67 -100 6.92 

20 JPSS-1 10.763 12.013 -0.160 1,331 0.234 58.1 -0.57 -112 8.84 

Table 3. LST-SW COEFFICIENTS (C0 TO C6) FOR NOAA SATELLITES (7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20/JPSS-1) 

 
 

NOAA λieff λjeff R δalg (K) 
 

δNE∆T (K) δε (1%) δε (0.5%) δW δTotal (Ts) δTotal (Ts) 

7 10.786 11.896 0.95 1.05 0.27 1.46 0.73 0.02 1.82 1.31 
9 10.774 11.85 0.96 1.04 0.31 1.64 0.82 0.04 1.97 1.36 
11 10.794 11.891 0.96 1.04 0.29 1.57 0.79 0.03 1.91 1.34 
12 10.857 11.945 0.94 1.06 0.28 1.56 0.78 0.06 1.91 1.35 
14 10.857 11.982 0.94 1.06 0.25 1.39 0.7 0.03 1.77 1.29 
15 10.82 11.926 0.95 1.05 0.28 1.51 0.76 0.03 1.86 1.33 
16 10.914 11.977 0.93 1.07 0.26 1.63 0.82 0.11 1.97 1.38 
17 10.797 11.927 0.95 1.05 0.27 1.46 0.73 0.03 1.82 1.31 
18 10.797 12.016 0.94 1.07 0.22 1.32 0.66 0.03 1.71 1.28 
19 10.793 12.045 0.93 1.07 0.21 1.25 0.63 0.03 1.66 1.25 
20 
JPSS-1 

10.763 12.013 0.91 1.09 0.23 1.35 0.67 0.04 1.75 1.30 

  min 0.91 1.04 0.21 1.25 0.63 0.02 1.66 1.25 

  max 0.96 1.09 0.31 1.64 0.82 0.11 1.97 1.38 

  mean 0.94 1.06 0.27 1.46 0.73 0.03 1.82 1.31 

  stdv 0.01 0.02 0.03 0.13 0.07 0.03 0.10 0.04 

  rmse 0.94 1.06 0.27 1.47 0.73 0.04 1.82 1.31 

 
Table 4. Sensitivity Analysis: δalg error due to the minimization with the corresponding correlation coefficient ® δNE∆T error due to the 
noise equivalent Delta Temperature, δε error due to uncertainty of the surface emissivity, δw error due to uncertainty of the atmospheric 

water vapor content, and δTotal (Ts) the total error in the LST considering typical values of emissivity errors e(εi) = e(εj) = 1 % AND e(εi) 
= e(εj) = 0.5 %. 
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Table 4 compiles the corresponding sensitivity analysis for the NOAA satellites. The error due to the 
minimization, δalg (in K), with values varying between a minimum of 1.04 K and a maximum of 1.09 K with a 
correlation coefficient, R, varying between 0.91 and 0.96. The error due to the noise equivalent to delta 
temperature, δNE∆T, is varying between a minimum of 0.21 K and a maximum of 0.31 K. The error due to the 
uncertainty of the atmospheric water vapor content, δw, shows variation between a minimum of 0.02 K and a 
maximum of 0.11 K. 
The error due to the uncertainty of the surface emissivity δε, shows variation with a minimum of 1.25 K and a 
maximum of 1.64 K considering e(εi) = e(εj) = 1 % and variation with a minimum of 0.63 K and a maximum of 
0.82 K considering e(εi) = e(εj) = 0.5 %. Finally, the total error in LST, δTotal(Ts), is showing a mean error value 
of 1.82 K and a variation with a minimum of 1.66 K and a maximum of 1.97 K considering e(εi) = e(εj) = 1 % 
and a mean error value of 1.31 K with a minimum of 1.25 K and a maximum of 1.38 K considering e(εi) = e(εj)= 
0.5 %. 
Figure 2 shows that the LST-SW algorithms are able to produce LST NOAA series with values of root mean 
square error (rmse = 1.82 K) and standard deviation (stdv = 0.10 K) considering e(εi) = e(εj)= 1 %, and (rmse = 
1.31 K; stdv = 0.04 K) considering e(εi) = e(εj)= 0.5 %. The totality of the LST-SW algorithms present high 
correlation values between 0.91 and 0.96. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Parameters representation 

 

8. Validation 

 
Validation is necessary in order to understand how well the retrieved LST with the algorithm matches the actual 
one in the real world. 
In this section, we aim to validate the proposed Split-Window (SW) algorithms for NOAA-11 and 12 using Hay 
and Walpeup in situ measurements data and to study the behavior of the pseudo-validation of SW algorithms for 
NOAA (7, 9, 14, 15, 16, 17, 18, 19), NOAA-20 RL, NOAA-20 Enterprise and JPSS-1/ NOAA-20. General 
statistics: Minimum (Min). Maximum (Max). Average (µ) and Standard deviation (σ). The effective wavelengths 
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ieff (m) and jeff (m) for the SW AVHRR Channel 4 and 5. The effective wavelength difference between 
AVHRR Channel 4 and Channel 5: ∆ = 5eff - 4eff m. Mean differences (bias) (K). Standard deviation of 
differences (K). Root Mean Square Error (K) 

 

 

 
 

Sensor 
 
Sites 

 

 
ieff 
(µm) 

 
jeff 
(µm) 

 
∆ 
(µm) 

 
Mean 
differences 
(bias) (K) 

 
Standard 
deviation of 
differences 

(K) 

 
Root 
Mean 
Square 
Error (K) 

NOAA-7 

H
ay

 a
nd

 W
al

pe
up

 (
N

O
A

A
-1

1)
 10.79 11.9 1.11 0,78 1,45 1,65 

NOAA-9 10.77 11.85 1.08 0,55 1,56 1,66 

NOAA-11 10.79 11.89 1.10 0,65 1,52 1,65 

NOAA-12 10.86 11.95 1.09 0,70 1,45 1,61 

NOAA-14 10.81 11.98 1.17 0,86 1,39 1,63 

NOAA-15 10.82 11.93 1.11 0,76 1,46 1,65 

NOAA-16 10.91 11.98 1.06 0,93 1,40 1,68 

NOAA-17 10.80 11.93 1.13 0,78 1,44 1,64 

NOAA-18 10.80 12.02 1.22 1,11 1,36 1,76 

NOAA-19 10.79 12.04 1.25 1,23 1,37 1,84 

JPSS-1/NOAA-
20 

10.70 12.05 1.35 1,11 1,37 1,76 

 
 

    
 

   

NOAA-7 

H
ay

 a
nd

 W
al

pe
up

 (
N

O
A

A
-1

2)
 10.79 11.9 1.11 1,17 1,19 1,66 

NOAA-9 10.77 11.85 1.08 1,00 1,26 1,61 

NOAA-11 10.79 11.89 1.10 1,08 1,24 1,64 

NOAA-12 10.86 11.95 1.09 1,09 1,17 1,60 

NOAA-14 10.81 11.98 1.17 1,18 1,14 1,64 

NOAA-15 10.82 11.93 1.11 1,15 1,19 1,66 

NOAA-16 10.91 11.98 1.06 1,29 1,11 1,70 

NOAA-17 10.80 11.93 1.13 1,16 1,18 1,65 

NOAA-18 10.80 12.02 1.22 1,37 1,11 1,76 

NOAA-19 10.79 12.04 1.25 1,44 1,09 1,81 

JPSS-1/NOAA-
20 

10.70 12.05 1.35 1,38 1,11 1,78 

 

Table 5. Validation of the proposed Split-Window (SW) algorithms for NOAA-11 and 12 using Hay and Walpeup in situ 
measurements data. 

 
In order to give an idea of the approximated behavior of the proposed SW algorithms, we have used this database. 
Table 5 gives the validation Root Mean Square Error (RMSE) of NOAA algorithms series for the ground truth 
data set and the third column shows the RMSE of the algorithms for the total measurements of the Hay and 
Walpeup sites. 
The results show that the algorithms are able to produce LST NOAA series with Mean differences between 0.55 
K and 1.34 K for Hay and Walpeup (NOAA-11) and 1 K and 1.51 K for Hay and Walpeup (NOAA-12). In 
addition, the algorithms permit to provide the LST with standard deviation lower than 1.56 K and lower than 1.33 
K for the two sites Hay and Walpeup (NOAA-11) and Hay and Walpeup (NOAA-12) respectively. 
The validation analysis results that, the algorithms have the ability to produce LST with, RMSE with values 
varying between 1.61 K and 1.96 K for Hay and Walpeup (NOAA11) and  1.61 K and 2.02 K for Hay and Walpeup 
(NOAA12) dataset. 
Based in total results we conclude that the JPSS-1/NOAA-20 algorithm can be calculate the LST with a bias lower 
1,17 K and  a Standard deviation of differences of 1,37 K and a RMSE lower than 1.81 K for the total 
measurements of the Hay and Walpeup sites, which confirms the accuracy of these two algorithms in LST 
retrieval. 
These values are in the range of the algorithm error, and therefore, they give confidence about the performance of 
the JPSS-1/NOAA-20 LST SW algorithm retrieving from NOAA satellites series data. 
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9. Conclusion 

 
The good performance of the JPSS-1/NOAA-20 algorithms in validation using data sets indicates that this 
algorithm is able to provide an accurate LST retrieval in the known atmospheric transmittance and ground 
emissivity and atmospheric water vapor conditions. The accuracy in LST estimation confirms that this algorithm 
is a better alternative, in general, for applications to the real LST retrieval from VIIRS sensors data. 
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