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Abstract 
As a maritime country, Indonesia possesses abundant marine resources, including the black sea cucumber 
(Holothuria atra). The black sea cucumber has not been fully utilized due to its slightly bitter taste and 
relatively low price. However, several studies have shown that the black sea cucumber has various health 
benefits. Based on this, the present research aims to identify the compounds in the black sea cucumber that 
can be used as medicine, and the diseases that can be addressed with these compounds using a network 
pharmacology analysis approach. The network pharmacology approach includes topology analysis of 
protein-protein interactions and fuzzy clustering to group protein targets, as well as biological information 
such as gene ontology (GO) and pathways. This study identifies 43 compounds found in black sea cucumber 
can be used as medicine to address three diseases: Malignant Neoplasm of Breast, Leukemia Myelocytic 
Acute, and Colorectal Carcinoma by targeting seven protein targets associated with each disease such as 
AKT1, AR, ESR1, TP53, JAK2, CTNNB1, GNAS. 

Keywords: Bioinformatics; black sea cucumber; fuzzy clustering; network pharmacology; topological 
analysis. 

1. Introduction 

In Asia, sea cucumbers are commonly consumed as health food and considered a delicacy. When used as a 
health food, sea cucumbers have numerous health benefits, serving as tonics and possessing the ability to heal 
various diseases and disorders [Bordbar et al. 2011]. In recent years, the health benefits of sea cucumbers have 
been scientifically validated, showcasing their effectiveness as wound-healing agents, antibacterials, antioxidants, 
blood clot preventers, and inhibitors of cancer cell growth [Pangestuti and Arifin 2018]. One sea cucumber species 
that has seen increased demand in the international market is the black sea cucumber (Holothuria atra) [Hartati 
et al. 2021]. However, black sea cucumber is one of the sea cucumber species with relatively lower commercial 
value and is seldom consumed due to its slightly bitter taste [Salim Hanafi et al. 2019]. 

Black sea cucumber has been found to contain protein compounds that can act as immunomodulators, 
substances that can stimulate or suppress the immune system and potentially serve as medicinal agents [Fadhlia 
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2017]. However, to date, there is a lack of specific research elucidating the diseases that can be addressed using 
the protein compounds found in black sea cucumber. 

The search for diseases that can be treated using specific compounds can be conducted through laboratory 
research involving in vivo or in vitro studies, as well as in silico approaches. Experimental research conducted in 
the laboratory, such as in vitro or in vivo studies, requires significant time and resources [Acencio and Lemke 
2009]. Hence, in silico research can be conducted as an alternative. In silico research refers to studies conducted 
using computational approaches [Ekins et al. 2007]. 

The identification of diseases that can be addressed with specific drug compounds involves searching for the 
protein targets associated with those diseases that interact with the black sea cucumber compounds. This challenge 
can be overcome by using the network pharmacology approach [Umar et al. 2022], which systematically describes 
a disease and its interactions with drugs in the body through biological networks [Muhammad et al. 2018].  

By exploring compound-target networks, protein targets associated with black sea cucumber compounds can 
be identified. Protein targets are proteins that are associated with at least one disease [Ghadermarzi et al. 2019]. 
However, there is many protein targets associated with black sea cucumber compounds. Therefore, the 
identification of significant proteins among the multitude of protein interactions is necessary. 

Topological analysis of protein-protein interaction (PPI) networks can aid in identifying proteins with crucial 
roles in network connectivity [Soofi et al. 2020]. Topological analysis helps in pinpointing significant proteins by 
measuring the most important nodes using various centrality measurements [Pan et al. 2016]. There are several 
types of centrality measurements. Among the centrality measures commonly used for identifying important 
proteins, degree centrality is frequently employed [Lei et al. 2019; Wang et al. 2020; Umar et al. 2022; Zuhri et 
al. 2022]. 

Searching for significant proteins solely based on protein-protein interaction data can lead to a high rate of 
false positives [Mahdavi and Lin 2007]. This can be mitigated by incorporating biological information in the 
process of identifying significant proteins [Zhong et al. 2021] . Gene Ontology (GO) and pathways are biological 
data that can be utilized in the search for significant proteins [Reimand et al. 2019; Zhu et al. 2019]. With the 
integration of biological information such as GO and pathways, the scale of PPI data expands. Clustering methods 
can be used to cluster PPI data. A study by Fernando (2017) [Fernando 2017] employed MCODE clustering to 
find significant proteins; however, MCODE clustering lacks the ability to detect overlaps. 

Another soft clustering method is Fuzzy K-Partite clustering, which clusters large-scale PPI data into small-
scale, functionally related clusters [Ramadhani 2021]. Fuzzy K-Partite clustering was developed by Hartsperger 
et al. (2010) [Hartsperger et al. 2010]. This method enables tripartite clustering of disease-gene-protein data. The 
fuzzy approach is employed due to its capability for overlap clustering, where data can belong to more than one 
cluster. This is crucial as each network is multifunctional and can belong to multiple clusters [Hartsperger et al. 
2010]. 

For example, Umar et al in 2022 [Umar et al. 2022] conducted the identification of drug candidates and protein 
targets from Curculigo spp. compounds for the treatment of diabetes mellitus using network pharmacology, 
molecular docking, and molecular dynamics simulation techniques. By using the same methods, Zuhri et al in 
2022 [Zuhri et al. 2022] conducted the identification of drug candidates and protein targets from Tinospora crispa 
as insulin sensitizer. In this study, the identification of diseases, along with their significant protein targets that 
can be addressed by bioactive compounds in black sea cucumber, is performed using network pharmacology. The 
approach includes the construction of a compound-target network, topology analysis, and clustering of protein-
protein interactions (PPI), as well as enrichment analysis using Gene Ontology (GO) and pathway analysis (Fig 
1). 

2. Material and Methods 

2.1. Constructing database of known black sea cucumber compounds 

The compound data of black sea cucumber was obtained from Fadhlia's research in 2017 [Fadhlia 2017], and 
its chemical structures were searched for in the Simplified Molecular Input Line Entry System (SMILES) format  
using the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) [Kim et al. 2023]. Subsequently, the compound 
data was inputted into the SwissADME database (http://www.swissadme.ch/) [Daina et al. 2017] to assess the 
drug-likeness and druggability of the compounds. This assessment was based on the Lipinski Rule of Five and 
Abbott Bioavailability Score with a threshold of 0.5 [Lipinski et al. 2001; Lipinski 2004]. Only the compounds 
that met both criteria were considered in the analysis. 
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Fig. 1 General workflow of present work using network pharmacology analysis 

2.2. Constructing database of protein target involved to black sea cucumber compounds 

The compounds that have passed the data filtration stage are used as input in the PubChem BioAssays 
database (https://pubchem.ncbi.nlm.nih.gov/docs/bioassays) [Wang et al. 2009] to obtain protein target data 
associated with black sea cucumber compounds. This data is then used as input in the STRING database 
(https://string-db.org/) [Szklarczyk et al. 2023] with the parameter set to search for the full STRING network type 
and a required score set to medium confidence (0.400) to obtain protein-protein interaction (PPI) data in the form 
of a network. The resulting network is then reduced based on the degree centrality values of each protein. Top 50 
protein targets with the highest degree centrality values are selected, this is done in order to limit the number and 
ensure that the proteins used for the next stage are indeed significant proteins. Degree centrality for each protein 
targets is calculated using following equation. 

𝐷𝐶ሺ𝑢ሻ ൌ  Σ௩𝑎௨,௩         (1) 
 

Where DC(u) represents the degree centrality value of node u. au,v is the adjacency matrix entry for node u 
and node v, with a value of one if they are connected and zero otherwise. Next, for each of the 50 proteins, their 
respective gene ontology (GO) and pathway data are retrieved. The GO data includes three categories: molecular 
function, cellular component, and biological process. The GO data is obtained from the UniProt database 
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(https://www.uniprot.org/) [Bateman et al. 2015], while the pathway data is retrieved using Metascape 
(https://metascape.org/) [Zhou et al. 2019].  

2.3. Clustering and clusters analysis 

The significant protein targets data, GO molecular function GO cellular component, GO biological process, 
and pathway data obtained are then used to construct a bipartite graph. The data is transformed into an adjacency 
matrix, which serves as input for the clustering step. Clustering is performed between proteins and GO molecular 
function, GO cellular component, GO biological process, or pathway data using Fuzzy K-Partite clustering.  
The initialization of the number of clusters to be formed should be done in advance, as the Fuzzy K-Partite 
clustering method is a non-hierarchical clustering method. The equations to determine the maximum number of 
clusters for each GO or pathway data and the maximum number of clusters for protein data can be seen in Equation 
2 and Equation 3 [Hartsperger et al. 2010; Ramadhani 2021; Ode et al. 2022].  
 

𝐶௚௢/௣௔௧௛௪௔௬ ൌ  
ே೒೚/೛ೌ೟೓ೢೌ೤

ଵ଴
  (2) 

 
As in Eq. 2, 𝐶௚௢/௣௔௧௛௪௔௬ represents the maximum number of clusters for each GO or pathway data that can be 
created using Fuzzy K-Partite clustering, and 𝑁௚௢/௣௔௧௛௪௔௬ is the number of nodes in each GO or pathway data. 
The maximum number of clusters for each GO or pathway obtained from the calculation process will be used to 
determine the maximum number of protein cluster, which can be seen in this following equation. 
 

𝐶௣௥௢௧௘௜௡ ൌ  𝐶௚௢/௣௔௧௛௪௔௬ට
ே೛ೝ೚೟೐೔೙

ே೒೚/೛ೌ೟೓ೢೌ೤
  (3) 

 
In Eq. 3, 𝐶௣௥௢௧௘௜௡ represents the maximum number of protein clusters. 𝑁௣௥௢௧௘௜௡ is the number of nodes in the 
protein targets data. This algorithm outputs the membership values of proteins and GO/pathways in each cluster, 
as well as the inter-cluster connectivity values between protein clusters and GO/pathway clusters. The inter-cluster 
connectivity value will be high if the percentage of cluster members is low, and vice versa. And the equation to 
calculate the cost function value can be seen in Equation 4. 

 

𝑓ሺ𝐻, 𝐶ሻ ൌ  Σ௜ழ௝ฮ𝐴ሺ௜௝ሻ െ 𝐶ሺ௜ሻ𝐵ሺ௜௝ሻ𝐶ሺ௝ሻฮ
ி

ଶ
  (4) 

 
‖. ‖ி

ଶ  is a value that represents the squared Frobenius norm, which is the sum of squares of the matrix elements. 𝐴 
is an adjacency matrix between protein targets and GOs/pathways, each element in matrix 𝐴 is valued one if there 
is an edge connecting between protein target and GO/pathway, conversely, it is valued zero. 𝐵 represents the 
connectivity matrix between each protein clusters and GO/pathway clusters. Membership value between each 
protein and its protein clusters or GOs/pathways and its GO/pathway clusters represented by 𝐶 in form of 
membership value matrix. These three matrices are used as input for Fuzzy K-Partite clustering, which the 
algorithm can be seen in Table 1 [Hartsperger et al. 2010]. 

In this study, there are four sets of data paired with protein target data, namely molecular function GO, cellular 
component GO, biological process GO, and pathway. Based on this, the clustering process is performed four 
times, which includes clustering of proteins with molecular function GO, cellular component GO, biological 
process GO, and pathway. This is done due to the absence of information regarding the relationships between 
each type of GO and pathway. The formed cluster by using fuzzy k-partite clustering, whether they are protein 
target clusters or GO/pathway clusters, have interconnectivity values between the two independent sets. By 
comparing the interconnectivity values among clusters, those with highest interconnectivity are selected. 
Subsequently, the members of each best cluster are the ones that consist of protein targets and GO term molecular 
function, GO term cellular component, GO term biological process, or pathway associated with the compounds 
from the black sea cucumber. 

2.4. Prediction of diseases treatable by black sea cucumber compounds 

All the significant protein targets associated with black sea cucumber compounds obtained from the previous 
clustering step are then used as input in the DisGeNET database (https://www.disgenet.org/search) [Piñero et al. 
2015] to obtain associations between the protein targets and diseases. The process of searching for diseases related 
to significant protein targets is carried out by using the API of the DisGeNET database, which takes significant 
protein targets obtained from the subsequent stage as input. Subsequently, information regarding diseases 
associated with the input significant protein targets is retrieved. These protein-target-disease associations are then 
linked back to the bioactive compounds in black sea cucumber that can be used as potential drugs. The final 
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visualization is formed as an interaction network between the bioactive compounds in black sea cucumber, protein 
targets, and diseases that have the potential to be treated with these compounds. 

 
Fuzzy K-Partite clustering algorithm 

Input: k-partite protein target graph 𝑃 with possibly non-negatively weighted edge matrices 𝐴ሺ௜௝ሻ, 𝒊 ൏ 𝒋, number of clusters 𝒎𝟏, … , 𝒎𝒌  
Output: fuzzy clustering membership value 𝐶ሺ௜ሻ and k-partite cluster interconnection value graph 𝐻 given by matrices 𝐵ሺ௜௝ሻ 
1 Initialize 𝐶ሺ௜ሻ, 𝐵ሺ௜௝ሻ to random non-negative matrices 
2 Normalize 𝐶௥௦

ሺ௜ሻ ← 𝐶௥௦
ሺ௜ሻ/ሺΣ௧𝐶௥௧

ሺ௜ሻሻ for all 𝒊, 𝒓, 𝒔 
repeat 

3  update fuzzy cluster 
for 𝒊 ← 𝟏, … , 𝒌 do 
 𝐶ሺ௜ሻ ← 𝐶ሺ௜ሻ ⊗ ሺΣ௝ஷ௜𝐴

ሺ௜௝ሻ𝐶ሺ௜ሻ𝐵ሺ௜௝ሻ்ሻ ⊘ ሺ𝐶ሺ௜ሻ𝐵ሺ௜௝ሻ𝐶ሺ௝ሻ்𝐶ሺ௝ሻ𝐵ሺ௜௝ሻ்ሻ 

Normalize 𝐶௥௦
ሺ௜ሻ ← 𝐶௥௦

ሺ௜ሻ/ሺΣ௧𝐶௥௧
ሺ௜ሻሻ for all 𝒓, 𝒔 

end 
4 Update k-partite cluster graph 𝐻 

for 𝒊 ← 𝟏, … , 𝒌 െ 𝟏 do 
 for 𝒋 ← 𝒊 ൅ 𝟏, … , 𝒌 do 

 𝐵ሺ௜௝ሻ ← 𝐵ሺ௜௝ሻ ⊗ ሺ𝐶ሺ௜ሻ்𝐴ሺ௜௝ሻ𝐶ሺ௝ሻሻ ⊘ ሺ𝐶ሺ௜ሻ்𝐶ሺ௜ሻ𝐵ሺ௜௝ሻ்𝐶ሺ௝ሻ்𝐶ሺ௝ሻሻ
end 

end 
Until convergences; 

Note: ⊗ and ⊘ symbolize element-wise multiplication and division, respectively 

Table 1 Fuzzy K-Partite clustering algorithm 

3. Results and Discussion 

3.1. Database of known black sea cucumber compounds 

A total of 102 compounds were obtained from Fadhlia's research in 2017 [Fadhlia 2017]. After inputting 
these compounds into the PubChem and SwissADME databases [Daina et al. 2017; Kim et al. 2023], their 
chemical structures were obtained in the SMILES format, and the Abbott Bioavailability Score was calculated. 
Out of the 102 compounds, 13 compounds are duplicated, and 28 compounds did not meet the criteria as drugs, 
as their Abbott Bioavailability Score was less than 0.5. The molecular weight ranges from 109.15 to 613.79, with 
Hypotaurine as the lightest molecule and Indinavir as the heaviest molecule. Predicted gastrointestinal absorption 
showed 47 of 61 compounds classified as highly absorbed in GI tract. The drug likeness of compounds was 
obtained through the Lipinski Rule of Five, where 40 compounds satisfy all five criteria according to Lipinski's 
rules, and the remaining 21 compounds have 1-2 violations against the Lipinski Rules. The selected compounds 
can be seen in Table 2. 
 

Compound Formula MW GI absorption Lipinski Bioavailability Score 

Polygodial C15H22O2 234.33 High 0 0.55 

Astaxanthin C40H52O4 596.84 High 0 0.55 

Carvacrol C10H14O 150.22 High 0 0.55 

Phenelzine C8H12N2 136.19 High 0 0.55 

Meclizine C25H27ClN2 390.95 High 1 0.55 

Arachidonate C20H32O2 304.47 High 1 0.55 

Riboflavin C17H20N4O6 376.36 Low 0 0.55 

Hypotaurine C2H7NO2S 109.15 High 0 0.55 

Xylitol C5H12O5 152.15 Low 0 0.55 

Hydrocortisone cypionate C29H42O6 486.64 High 0 0.55 

Table 2 Prediction of black sea cucumber compounds and its druggability 
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Compound Formula MW GI absorption Lipinski Bioavailability Score 

20-Hydroxyecdysone C27H44O7 480.63 High 1 0.55 

Buprenorphine C29H41NO4 467.64 High 0 0.55 

Phylloquinone C31H46O2 450.7 Low 1 0.55 

Calcidol C2CaMgO6 184.4 Low 0 0.55 

Solanidine C27H43NO 397.64 High 1 0.55 

Chenodeoxycholate C24H40O4 392.57 High 0 0.56 

Anandamide C22H37NO2 347.53 High 0 0.56 

Quercetin C15H10O7 302.24 High 0 0.55 

Aphidicolin C20H34O4 338.48 High 0 0.55 

Cetraxate C17H23NO4 305.37 High 0 0.55 

Taxifolin C15H12O7 304.25 High 0 0.55 

Tamoxifen C26H29NO 371.51 Low 1 0.55 

(9Z)-Octadecenoic acid C18H34O2 282.46 High 1 0.85 

Inosine C10H12N4O5 268.23 Low 0 0.55 

Albendazole C12H15N3O2S 265.33 High 0 0.55 

N-Acetylserotonin C12H14N2O2 218.25 High 0 0.55 

Dehydroemetine C29H38N2O4 478.62 High 0 0.55 

Nicotinamide C6H6N2O 122.12 High 0 0.55 

Naproxen C14H14O3 230.26 High 0 0.85 

Sterol C17H28O 248.4 High 1 0.55 

Carpaine C28H50N2O4 478.71 High 0 0.55 

Terfenadine C32H41NO2 471.67 High 1 0.55 

Puromycin C22H29N7O5 471.51 Low 1 0.55 

Glycyrrhetinate C30H45O4- 469.68 High 1 0.56 

Hydroxytamoxifen C26H29NO2 387.51 High 1 0.55

Morphine C17H19NO3 285.34 High 0 0.55

Taurine C2H7NO3S 125.15 High 0 0.55

Procaine C13H20N2O2 236.31 High 0 0.55

Telmisartan C33H30N4O2 514.62 Low 2 0.85

Selegiline C13H17N 187.28 High 0 0.55

Mannitol C6H14O6 182.17 Low 1 0.55

Flavonol C15H10O3 238.24 High 0 0.55

Khellin C14H12O5 260.24 High 0 0.55

Phencyclidine C17H25N 243.39 High 0 0.55

Table 2 Prediction of black sea cucumber compounds and its druggability (Continued) 
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Compound Formula MW GI absorption Lipinski Bioavailability Score 

Pyridoxal phosphate C8H10NO6P 247.14 High 0 0.56

Indinavir C36H47N5O4 613.79 High 1 0.55 

Fosinopril C30H46NO7P 563.66 Low 1 0.56 

Ambenonium C28H42Cl2N4O2++ 537.56 High 1 0.55 

Fucidic acid C31H48O6 516.71 Low 1 0.56 

Acadesine C9H14N4O5 258.23 Low 0 0.55 

Tetracaine C15H24N2O2 264.36 High 0 0.55 

Orphenadrine C18H23NO 269.38 High 0 0.55 

Cycloheximide C15H23NO4 281.35 High 0 0.55 

Pregnenolone C21H32O2 316.48 High 0 0.55 

Danazol C22H27NO2 337.46 High 0 0.55 

Betulinic acid C30H48O3 456.7 Low 1 0.85 

Fluocinolone C21H26F2O6 412.42 High 0 0.55 

Butoconazole C19H17Cl3N2S 411.78 High 1 0.55 

Oxacillin C19H19N3O5S 401.44 High 0 0.56 

Amsacrine C21H19N3O3S 393.46 High 0 0.55 

Table 2 Prediction of black sea cucumber compounds and its druggability (Continued) 

As can be seen in Table 1, there are 61 black sea cucumber compounds that meet Lipinski Rule of Five and Abbott 
Bioavaibility Score criteria and can be used as drugs. By using these compounds, a search for protein targets 
associated with these compounds can be conducted. 

3.2. Protein-protein interaction network related to black sea cucumber compounds 

By using the selected black sea cucumber compounds, 1226 protein targets that interact with black sea 
cucumber compounds were obtained from the PubChem BioAssays database [Wang et al. 2009]. All of these 
protein targets were used as input in the STRING database [Szklarczyk et al. 2023] to obtain a protein-protein 
interaction network. The resulting network consists of 4,598 proteins and 27,695 interactions. (Fig 2). 
 

 
Fig. 2 Protein-protein interaction network 
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Obtained protein-protein interaction network was reduced by removing subgraphs that are not connected 
to the main network, as shown in the red box in Fig 3. This process must be done because the subgraph that are 
not connected to the main network can affect the degree centrality calculation for each protein. After this process, 
resulting in a network comprising 4,499 protein targets and 27,330 interactions. 

 

 
Fig. 3 Graph reduction process by eliminating subgraph that are not connected to the main network 

The degree centrality values for each protein target in the reduced network are calculated by using Eq. 1. After 
calculation process, protein targets are sorted from the highest degree centrality and the top 50 protein targets with 
the highest degree centrality values are selected. Table 3 below shows the 50 protein targets and its degree 
centrality: 
 

Protein Target Degree Centrality 
TP53 290 

EP300 181 

HSP90AA1 174 

SRC 164 

CTNNB1 159 

GNAQ 144 

AKT1 121 

MAPK3 120 

EGFR 114 

HDAC1 110 

CYP3A4 103 

GNAS 102 

JUN 99 

STAT3 99 

MAPK1 98 

MYC 96 

HRAS 95 

PTPN11 93 

GRB2 91 

CDC42 89 

ESR1 86 

GNB1 86 

UBC 86 

Table 3 Top 50 protein targets with highest degree centrality 
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Protein Target Degree Centrality 

GNAI1 85 

CREBBP 83 

PPARGC1A 82 

CYP1A1 79 

RXRA 78 

SHC1 77 

GNA11 77 

HIF1A 75 

PCNA 73 

DLG4 72 

JAK2 71 

UBE2I 71 

CBL 70 

ALB 70 

CDK1 70 

NCOA1 70 

PPARG 69 

ARRB1 69 

GNAI2 68 

PPARA 68 

RELA 68 

RPS27A 68 

TRAF6 67 

PLCG1 67 

CASP3 66 

APP 65 

Table 3 Top 50 protein targets with highest degree centrality (Continued) 

By using the 50 proteins obtained as input in the UniProt and Metascape databases [Bateman et al. 2015; 
Zhou et al. 2019], a total of 1,458 biological process GO terms with the top three most frequent are positive 
regulation of transcription by RNA polymerase II, positive regulation of DNA-templated transcription, and signal 
transduction, 229 cellular component GO terms with the top three most frequent are cytosol, cytoplasm, and 
nucleoplasm, 326 molecular function GO terms with the top three most frequent are enzyme binding, identical 
protein binding, and chromatin binding, 148 pathways were obtained with the top three most frequent are thyroid 
cancer, bladder cancer, and endometrial cancer. These were then used to construct a bipartite graph connecting 
the protein targets using Cytoscape [Shannon et al. 2003]. The visualization of the formed bipartite graph can be 
seen in Fig 4. 

Each bipartite graph is then transformed into an adjacency matrix, which will be used as input in the clustering 
process. Adjacency matrix is a matrix that contains values of zero or one. If an edge has an interaction between a 
protein target and molecular functions GO term, cellular components GO term, biological processes GO term, or 
pathways, it will have a value of one, and vice versa. 

3.3. Clustering and clusters analysis 

Using the adjacency matrix formed as input in the Fuzzy K-Partite clustering, four results were obtained from 
the clustering process. The clusters that have been formed, whether they are protein clusters or GO/pathway 
clusters, have inter-cluster connectivity values with each other. By comparing these inter-cluster connectivity 
values, the cluster with the highest connectivity is selected. The members of each selected cluster represent a 
cluster that includes significant protein targets and their associated molecular function GO terms, cellular 
component GO terms, biological process GO terms, or pathways related to the compounds from black sea 
cucumber. In other words, these clusters consist of proteins and functional annotations or pathways that are 
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relevant to the compounds from black sea cucumber. The best results of clustering process can be seen in Table 
4. 

 

 
Fig. 4 (a) Bipartite graph of protein targets and biological process GO terms (b) Bipartite graph protein targets and cellular component GO 

terms (c) Bipartite graph protein targets and molecular function GO terms (d) Bipartite graph protein targets and pathway 

It can be observed that the process of clustering protein targets and pathways is the quickest to converge, 
reaching convergence in 12 iterations with the smallest cost function value of 138.95. This could be attributed to 
the relatively smaller amount of data used and the presence of many proteins linked to the same pathway. The 
largest cost function value is found in the clustering process of protein targets and biological process GO terms, 
reaching 2081.25. The largest formed cluster comprises 42 proteins in the process of clustering protein targets and 
biological process GO terms, and the smallest one contains 23 proteins in the process of clustering protein targets 
and molecular function GO terms. 

 

No. Clustering process Iteration 
Cost 

function 
Protein target 

members 
GOs/ Pathway 

members 
Inter-cluster 

connectivity value 

1 
Protein targets-Biological 
Process GO term 

19 2081.25 
42 protein 
targets 

1401 Biological 
Process GO term 

0.041 

2 
Protein targets-Cellular 
Component GO term 

25 573.51 
24 protein 
targets 

153 Cellular 
Component GO term 

0.122 

3 
Protein targets-Molecular 
Function GO term 

26 687.78 
23 protein 
targets 

185 Molecular 
Fucntion GO term 

0.094 

4 Protein targets-Pathway 12 138.95 
40 protein 
targets 

51 Pathway 0.008 

Table 4 Clustering results using Fuzzy K-Partite clustering and the best cluster members values 

The highest inter-cluster connectivity value is observed in the process of clustering protein targets and cellular 
component GO terms, with a value of 0.122, and the lowest in the process of clustering protein targets with 
pathways, with a value of 0.008. All the protein targets that are members of the best clusters from each clustering 
process are selected and combined, resulting in a total of 50 proteins. No significant protein targets are eliminated 
during the clustering process. This means that all the identified protein targets are considered relevant and are 
retained in the final set of 50 proteins. 
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3.4. Prediction of diseases treatable by black sea cucumber compounds and network analysis 

The significant protein targets obtained from the clustering process are used as input in the DisGeNET 
database to obtain protein-disease associations. The visualization of the protein-disease network can be seen in 
Fig 5. 

 

 
Fig. 5 Visualization of protein targets and diseases network 

The protein-disease network resulted in a total of 24 protein targets associated with 56 diseases. The diseases 
with the highest occurrence in the network are Malignant Neoplasm of Breast, Colorectal Carcinoma, and 
Leukemia Myelocytic Acute. These diseases, along with their associated protein targets, are linked back to the 
bioactive compounds in black sea cucumber that can be used as potential drugs in the form of a network. The 
visualization of the network, which includes the compounds, protein targets, and potential diseases that can be 
treated, can be seen in Fig 6. 

 

 
Fig. 6 Visualization of compounds, protein targets and diseases network 

This network consists of 43 black sea cucumber compounds, namely Taurine, Naproxen, Procaine, 
Arachidonate, Telmisartan, Hypotaurine, Selegiline, Mannitol, N-Acetylserotonin, Flavonol, Khellin, Indinavir, 
Nelfinavir, Ambenonium, Fucidic acid, Acadesine, Tetracaine, Orphenadrine, Cycloheximide, Pregnenolone, 
Danazol, Hydroxytamoxifen, Terfenadine, Puromycin, Betulinic acid, Butoconazole, Amsacrine, 
Chenodeoxycholate, Xylitol, Carvacrol, Phenelzine, Riboflavin, 20-Hydroxyecdysone, Phylloquinone, 
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Anandamide, Quercetin, Aphidicolin, Taxifolin, Tamoxifen, (9Z)-Octadecenoic acid, Inosine, Albendazole, and 
Nicotinamide. These compounds have the potential to treat three diseases: Malignant Neoplasm of Breast, with 
protein targets AKT1, AR, ESR1, and JAK2. Leukemia Myelocytic Acute, with the protein target JAK2. And 
Colorectal Carcinoma, with protein targets CTNNB1 and GNAS. 

4. Conclusion and Future Scope 

This research aimed to identify potential diseases that can be treated with black sea cucumber compounds 
using a network pharmacology approach. By employing the compound-target network approach and topological 
analysis with centrality measurements from protein-protein interaction data, significant protein targets that interact 
with black sea cucumber compounds and can be used as drugs were discovered. Utilizing Fuzzy K-Partite 
clustering and conducting enrichment analysis with Gene Ontology (GO) and pathways, the significant protein 
targets found were validated, confirming their significance. These protein targets were then used to identify 
diseases associated with them, which were subsequently linked back to black sea cucumber compounds that can 
be used as potential drugs. A total of 43 compounds found in black sea cucumber can be used to address three 
diseases: Malignant Neoplasm of Breast, Leukemia Myelocytic Acute, and Colorectal Carcinoma by targeting 
specific protein targets associated with each disease. For further research, protein-protein interaction data can be 
utilized by cross-checking it with gene expression data, resulting in the construction of a weighted graph. 
Additionally, comparisons can be made with other soft clustering methods. 
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