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Abstract 

In the rapidly evolving landscape of healthcare, the efficient detection of drug reactions is of paramount 
importance to ensure patient safety and optimize treatment outcomes. This article presents a comprehensive study 
on the application of machine learning techniques for the early detection of drug reactions through the analysis of 
drug prescriptions in clinical settings. The study utilized a formulated model with classification and regression 
tree algorithm, iterative dichotomizer  3, gaussioan, naïve bayes, Bernoulli naïve bayes, multinomial naïve bayes, 
with adaptive boosting algorithm to extract valuable insights from health records and prescription data and predict 
the possible occurrence of adverse reactions from prescribed medications. A comparative analysis of the 
efficiencies of the various algorithms was carried out based on the computational learning theory. Among the 
myriad models scrutinized, the results showed that an ensemble comprising ID3, MultinomialNB, and AdaBoost 
emerged as a standout performer, consistently showcasing exceptional performance across multiple metrics. 

 Keywords: adverse drug reactions, artificial intelligence, machine learning, drug prescription, healthcare, 
prediction 

1. Introduction 

In contemporary healthcare, the precise and early identification of drug reactions remains a critical challenge, 
impacting patient safety and treatment outcomes [1]. Adverse reactions to medications pose substantial risks, often 
leading to increased morbidity, prolonged hospital stays, and elevated healthcare costs. Adverse Drug Reactions 
(ADR) are acknowledged factors contributing to morbidity and mortality universally [2][21]. It is estimated that 
ADRs represent the fourth leading cause of over 100,000 death in the United States alone, behind heart disease, 
cancer, and stroke [3][22]. Amidst this landscape, harnessing advanced computational methods, particularly 
through artificial intelligence (AI) and machine learning, has emerged as a promising avenue for transforming the 
detection and management of drug reactions [4][5]. The intersection of artificial intelligence and healthcare 
presents a realm of possibilities, particularly in analyzing drug prescriptions in clinical settings [6]. Understanding 
and predicting potential adverse reactions through data-driven approaches have garnered significant attention due 
to their potential to revolutionize the landscape of patient care [7][23]. This article focuses on elucidating the 
utilization of artificial intelligence methodologies to sift through vast datasets of drug prescriptions and patient 
reactions within clinical settings. Through systematic analysis and predictive modeling, this study endeavors to 
offer a proactive solution for identifying and managing drug reactions in clinical practice. The implications of this 
research extend beyond mere detection; it promises to pave the way for a more robust, preemptive healthcare 
system. Automating the process of detecting potential adverse drug reactions using AI-driven approaches not only 
enhances patient safety but also empowers healthcare professionals with actionable insights for informed decision-
making. 
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The objective of this manuscript is to provide an in-depth exploration of the application of artificial intelligence 
in deciphering drug reactions from prescription data in clinical environments based on the computational learning 
theory [8][24]. 
 
2. Related Work  

[9] undertook the development of data mining and machine learning models with the primary goal of predicting 
drug likeness and classifying drugs based on their associated diseases or organ categories. Their dataset, consisting 
of 762 compounds, was meticulously categorized into two primary groups: drugs (366 compounds) and nondrugs 
(396 compounds). The compounds were curated from [10], and the DrugBank database [11] was employed to 
establish the status of approved drugs. To assess the robustness of their prediction model, the compounds were 
thoughtfully partitioned into a training set (80%, comprising 610 compounds) and a test set (20%, encompassing 
152 compounds). A parallel distribution of drugs (73 compounds) and nondrugs (79 compounds) was maintained 
in the test sets. This partitioning process was executed through independent selection procedures utilizing a 
representativeness function, as proposed by [12]. The methodology incorporated a simulated annealing 
optimization strategy to select a subset of objects, namely compounds that best represented the current database 
from which it was drawn. Subsequently, predictive models were constructed on the training set employing a 10-
fold cross-validation approach and seven distinct methods. These models were meticulously tested on the test set. 
The prediction models were constructed using six diverse machine learning algorithms, encompassing decision 
trees, random forests (RF), support vector machines (SVM), artificial neural networks (ANN), k-nearest neighbors 
(k-NN), and logistic regression (LR). In each instance, classification models were established using the training 
set and subsequently employed to predict the activities, specifically drug status, of the test set compounds to 
validate the efficacy of the models. The implementation of these models was executed within the Weka 
framework, with evaluation metrics encompassing accuracy, sensitivity, specificity, and variance serving as 
performance benchmarks. [13] delved into the intricate realm of causality through the automated extraction of 
lexical patterns. The study aimed to derive the reliability of extracted lexical patterns in expressing adverse 
reactions to specific drugs by learning their respective weights. Notably, their method achieved an impressive 
ADR detection accuracy of 74% on an expansive manually annotated dataset comprising tweets from a social 
media platform. This dataset encompassed a standardized set of drugs and their associated adverse reactions. 
Importantly, their model exhibited proficiency in accurately discerning causality between drugs and adverse 
reaction-related events. However, it is imperative to underscore that while accuracy served as a performance 
metric, it may not provide a comprehensive assessment of their model's performance, warranting further 
evaluation using additional metrics. [14] embarked on an exploratory journey into the realm of social media 
mining for drug safety signal detection. Their pioneering work proposed the utilization of association mining and 
Proportional Reporting Ratios (PRR) to uncover valuable associations between drugs and adverse reactions. These 
associations were derived from the rich content contributed by users on social media platforms. In their 
experimental evaluation, ten drugs and five distinct adverse drug reactions were scrutinized. As a benchmark for 
assessing their techniques, they turned to the Food and Drug Administration (FDA) alerts. Their findings unveiled 
promising potential in employing metrics such as leverage, lift, and Proportional Reporting Ratio (PRR) for 
detecting adverse drug reactions that had been reported to the FDA. Importantly, PRR emerged as the standout 
performer among these metrics, showcasing its efficacy in identifying these critical drug safety signals. [15] 
introduced an innovative approach by proposing a Bayesian neural network method for generating signals related 
to adverse drug reactions (ADRs). Central to their work was the Bayesian Confidence Propagation Neural 
Network (BCPNN), renowned for its capacity to manage extensive datasets effectively. The BCPNN model 
exhibited robustness, particularly in handling imbalanced data and complex variables. Drawing from information 
theory, this tool proved ideal for uncovering drug-ADR combinations that exhibited high associations compared 
to the overall dataset or specific subsets thereof. Their study yielded compelling results, illustrating the potency 
of the BCPNN technique in early signal detection, exemplified by instances such as captopril-coughing. 
Moreover, the model demonstrated its ability to mitigate false positives, notably in cases where common drugs 
co-occurred with ADRs in the database, exemplified by scenarios involving digoxin and adverse reactions like 
acne or rash. Furthermore, the study conducted a routine application of the BCPNN to quarterly updates, revealing 
that a remarkable 1004 suspected drug-ADR combinations reached a confidence level of 97.5% difference from 
the dataset's generality. Significantly, among these combinations, 307 were identified as potentially serious ADRs, 
with 53 of them linked to novel drugs. This underscores the invaluable contribution of the BCPNN methodology 
to signal detection in the realm of adverse drug reactions. [16] introduced a pioneering approach aimed at large-
scale prediction of adverse drug reactions (ADRs) by harnessing the collective knowledge of chemical, biological, 
and phenotypic properties associated with drugs. Their innovative method integrated a diverse range of data, 
including the phenotypic characteristics of drugs, their indications, known ADRs, chemical structures, biological 
properties, protein targets, and pathway information. A comprehensive study was conducted, focusing on the 
prediction of 1385 well-documented ADRs associated with 832 approved drugs. To achieve this, the authors 
employed five distinct machine-learning algorithms, subsequently comparing their individual performance. The 
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evaluation of their model was carried out through a rigorous fivefold cross-validation process, ultimately revealing 
that the support vector machine (SVM) algorithm outperformed its counterparts. Of particular note was the 
significance of phenotypic data, which emerged as the most informative component for ADR prediction. 
Furthermore, the augmentation of the baseline chemical information with biological and phenotypic features led 
to a substantial enhancement in the performance of the ADR prediction model. Notably, the model effectively 
anticipated ADRs associated with the withdrawal of drugs like rofecoxib and cerivastatin, underscoring its 
practical utility. These findings collectively emphasized the value of phenotypic drug information in the realm of 
ADR prediction. Additionally, the study underscored the potential for constructing diverse predictive models by 
combining chemical, biological, and phenotypic information derived from approved drugs. Such models exhibited 
the capability to detect clinically significant ADRs across both preclinical and post-marketing phases. [17] 
introduced a computational model tailored for the prediction of adverse cardiovascular drug reactions (CV ADRs). 
Their approach relied on a machine learning-based framework that seamlessly integrated various drug features. 
These encompassed biological aspects, such as drug transporters, targets, and enzymes, as well as chemical 
attributes like substructure fingerprints. Phenotypic characteristics, which encompassed therapeutic indications 
and other identified ADRs, were also integrated into the model. To distill the most relevant features, the authors 
employed the minimum redundancy maximum relevance approach. Additionally, they employed a synthetic 
minority oversampling technique to address dataset imbalance effectively during model training. Remarkably, the 
study yielded a total of 504 distinct computational models tailored for predicting 36 unique CV ADRs. Across all 
models, an impressive accuracy rate of approximately 90% was achieved. Notably, the models incorporating 
biological and chemical features demonstrated enhanced informativeness compared to those relying solely on 
chemical properties. These results underscored the high accuracy of the predictive models devised in this study. 
Furthermore, they emphasized the pivotal role of phenotypic information in drug ADR prediction. The research 
highlighted the potential for combining various drug properties to construct computational models suitable for 
early-stage prediction of potential ADRs during drug development. Nevertheless, it is important to note that while 
accuracy served as a performance metric, a comprehensive assessment of the model's performance would require 
additional metrics beyond accuracy alone. [18] introduced an intricate methodology for the systematic and 
automated discovery of adverse drug events (ADRs) from electronic medical records, harnessing the power of the 
Random Forest algorithm. Their approach involved the utilization of textual information extracted from a vast 
repository of 9.5 million clinical notes, complemented by prior knowledge regarding drug usages and previously 
identified ADRs. These data were treated as input variables, subjected to further processing to generate statistics 
utilized by a discriminative classifier. This classifier was instrumental in assigning probabilities to the association 
of specific drug-disorder pairs with valid ADRs. The ensuing list of potential ADRs, as identified by the classifier, 
underwent additional scrutiny through filtration for positive support. This validation process leveraged two 
independent and complementary data sources, bolstering the reliability of the identified associations. The authors 
assessed the methodology's effectiveness by evaluating the support for predictions within various curated data 
sources. Furthermore, they employed a manually curated, time-indexed reference standard, focusing on label 
change reactions. Remarkably, the classifier exhibited a robust performance, achieving an impressive area under 
the curve (AUC) score of 0.94 on a held-out test dataset. This classifier was applied to an extensive set of 
2,362,950 possible drug-disorder pairs, comprising 1602 unique drugs and 1475 unique disorders, for which 
relevant data were available. This meticulous analysis yielded a collection of 240 high-confidence, well-supported 
drug-adverse reaction associations. Notably, 36% of these associations found additional support in external 
resources that were not accessible to the classifier. This methodology underscored the feasibility of systematic 
post-marketing surveillance for ADRs, utilizing electronic medical records as a foundational component of the 
learning healthcare system. [19] presented a cutting-edge model designed for the detection of potential adverse 
drug reactions (ADRs) using a Deep Neural Network (DNN). Their innovative DNN model was specifically 
engineered to serve two primary objectives: firstly, to identify potential ADRs associated with existing drugs, and 
secondly, to predict the possible ADRs that could emerge with the introduction of new drugs. The model's 
detection performance was enhanced through the incorporation of distributed representations of target drugs in a 
vector space. This approach was instrumental in capturing intricate relationships among drugs by employing a 
word-embedding technique to process extensive biomedical literature. Additionally, the authors introduced a 
mapping function designed to address scenarios where data for new drugs, absent from the existing dataset, needed 
to be accommodated. The results of their study revealed a robust overall performance, with a mean average 
precision at the top-10 achieved at 0.523, while the area under the receiver operating characteristic curve (AUC) 
score reached an impressive 0.844 for ADR prediction on the dataset. Notably, the model demonstrated a high 
level of effectiveness in identifying potential ADRs associated with existing drugs and predicting the possible 
ADRs that may emerge with new drug introductions. These findings underscored the model's effectiveness in the 
crucial task of ADR prediction, reinforcing its potential utility in the field of pharmacovigilance and drug safety 
monitoring. [20] introduced a robust model for predicting adverse drug reactions (ADRs) using machine learning 
techniques, with a significant emphasis on the formulation of a mathematical model using a combination of naïve 
bayes, decision tree, and adaptive boosting algorithms. The model was designed as a decision support tool for 
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clinical settings by systematically examining the relationships between prescribed medications and observed 
patient reactions. 

3. Methodology 

This section presents the research methodology adopted in this work. It begins with a description of the dataset 
that was used for the study the source of the data. It thereafter describes the various algorithms used for the 
formulation of the prediction model for drug reaction, the simulation of the model, the tools used, as well as the 
metrics for the evaluation of the model. Lastly, it presents a description of the architecture of the prediction model 
for the research. 

3.1 Data Acquisition 

The first objective of this research was to elicit relevant data on patients, which involved application and obtaining 
ethical clearance from the Obafemi Awolowo University Teaching Hospital Complex (OAUTHC) Ile Ife, in Osun 
State. A total of five hundred and eighteen (518) records were extracted from patients’ case notes in the Psychiatric 
Department of the OAUTHC, this was done using case study technique on cases of admitted patients within nine 
years (that is, between November 2010 and November 2019). The extraction of data regarding cases of diagnosis 
and corresponding treatment for each admitted patient was carried out because there was no such data available 
in electronic format in that department as at the time of this study. The variables for which data was collected 
include age, sex, diagnosis, substance dependence, polypharcacy, prescribed drugs, dose, route of administration 
and drug reaction. A brief description of these variables is as shown in Table 1 

 
Table 1: Brief Description of Variables 

 
S/N Feature Description 
1 Sex A measure of the biological 

difference between a male 
and a female 

2 Age The length of time the patient 
has lived, measured in years 

3 Diagnosis Identification of the nature of 
illness or reason for 
admission 

4 Polypharmacy The concurrent use of 
multiple medications by a 
patient. 

5 Substance dependent Whether the patient is into 
any form of drug addiction 

6 Prescribed drugs The drugs that were 
prescribed for each patient 
(antipsychotics in this case) 

7 Route of drug 
administration 

The path by which a drug is 
taken into the body 

8 Adverse reactions Whether the patient 
experienced any adverse 
reaction in the course of the 
treatment after the drugs 
were administered 

 
Some of the records in the case notes were incomplete, while others had patterns that could not be interpreted due 
to illegible handwritings. Hence the records were cleaned. In order to achieve meaningful prediction, the study 
required detail contents of the patient’s case notes such as the reasons for which the patients were admitted in the 
hospital (captured in terms of diagnosis for each patient), treatments administered in the course of admission, as 
well as the outcomes for each treatment. 

3.2 Data Pre-processing 
The collected data was first pre-processed using data binning, one-hot encoding technique, and data normalization. 
Data binning was used for the age attribute conversion to categorize it into three bins. This was done firstly by 
specifying three equally sized bins, the bin array was built from minimum value to maximum value using the bin 
with the calculated, and labels were thereafter created as “Teenager”, “Adult”, “Elderly”.  
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3.3 Model Formulation 

Here, we formulate an ADR prediction model using stacking technique. The individual classification algorithms 
were trained based on the complete training set, after which the meta-classifier was be fitted based on the outputs 
from the base classifiers in order to improve the performance of the prediction model. This involved the use of 
decision tree algorithm and the naive bayesian (NB) algorithms as base classifiers while the adaptive boosting 
algorithm was used as a meta-classifier. The use of decision tree was based on their ability to convert large 
complex datasets into easy-to-understand output and suitability in handling binary data as mostly contained in the 
ADR dataset. Also, decision tree, through its variant (C5.4) provides for minimizing the error during classification 
by reducing entropy through the computation of the information gain in the dataset. 

The choice for naive bayes was based on the fact that it works very well with binary data in classification task, 
while its variants provides for the enforcement of the conditional probability at different data points in order to 
improve the performance of the model. The choice for adaboost for was based on its ability to detect the point 
where the model misclassified the data and assign weight to those points in order to boost the performance of the 
final model, which is the meta-model. The following section presents the mathematical formulation of the 
prediction model: 

Let S be the ADR dataset, 
for the ADR dataset S, H(S) measures the amount of the uncertainty in the data as 
Entropy 

               H S  P C log P C         1  

Where, 
S: the current ADR dataset for which entropy is being calculated 
C: the set of classes in the ADR dataset, S 
P(C): the proportion of the number of elements in class C to the number of elements in set S. 

Information gain IG(A) measures the difference from before to after the ADR dataset S is split on an attribute 
A. That is, how much uncertainty in ADR dataset S was reduced after splitting set S on attribute A 

𝐼𝐺 𝐴, 𝑆 𝐻 𝑆 𝑝 𝑡 𝐻 𝑡   2  

Where, 

𝑆 𝑡                        3  

Where: 
H(S) is the entropy of dataset S from equation (2)  
T is the subset created from splitting ADR dataset set S by attribute A such that 
P(t) is the proportion of the number of elements in set S 
H(t) is entropy of set t 

Also, from Bayesian theorem, dealing with strong independence assumptions between predictors. The theorem 
provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and P(x|c). The classifier assumes 
that the effect of the value of a predictor (x) on a given class (c) is independent of the values of other predictors. 
That is, to say that the various attributes that predict the possibility of drug reactions are independent of the others. 
This assumption is useful when the number of instance, N is high and/or N is small, making (x|c) difficult to 
estimate. Even if the assumption does not hold, the model classification performance may still be good in practice 
because the decision boundaries may be insensitive to the specificities of the class-conditional probabilities 
p(xi|c); that is, variance is reduced because few parameters are required and the biased probability estimates may 
not matter since the aim is classification rather than accurate posterior class probability estimation. 

𝑝 𝑐|𝑥
𝑥|𝑐

                4    

Where: 
P(c|x): the posterior probability of class (target) given predictor (attribute) 
P(c): the prior probability of class 
P(x|c): the likelihood which is the probability of predictor given class  
P(x): the prior probability of predictor 

Let D be a training set of tuples and their association class labels. As usual, each tuple is represented by an n-
dimensional attribute vector, X = 𝑥 ,𝑥  ,…, 𝑥 ), depicting n measurement made on the tuple from n attributes,  
respectively, 𝐴 ,𝐴 , … ,𝐴 ). 
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Suppose there are m classes, 𝐶 ,𝐶 , … ,𝐶 ), given a tuple, X, the classifier will predict that tuple X belongs to 
the class 𝐶  if and only if 
P (𝐶 |x) > P (𝐶 |x) for 1 <= j <= m; j ≠ I (5)  

Thus, this maximize P(𝐶 |x). The class 𝐶  for which P (𝐶 |x) is maximized represents the Maximum Posteriori 
Hypothesis.  
By Bayes’ theorem  
 P (𝐶 |x) = P (𝑥|𝐶 ) P(𝐶 /P(x)  (6) 
As P (x) is constant for all classes, only P (𝑥|𝐶 )P (𝐶  need be maximized. If the class prior probabilities are not 
known, then it is commonly assumed that the classes are equally likely, that is; 
P (𝐶 ) = P (𝐶 ) = ………… = P (𝐶 )  (7) 
Maximizing P(𝑥|𝐶 ). Otherwise, this maximize P(𝑥|𝐶 )P(𝐶 ). That the class prior probabilities may be estimated 
by:  

P (𝐶 ) = |𝐶 , D|/|D|    (8) 
 
Where  

|𝐶 , D| is the number of training tuples of class 𝐶  in D.  
Given datasets with many attributes, it would be extremely computationally expensive to compute P (𝑥|𝐶 ). In 
order to reduce computation in evaluating P (𝑥|𝐶 ), the naïve Bayes’ assumption of class conditional 
independence is made.  
As per the conditional independence assumption of Bayes theorem, the presence or absence of some parameters 
of a class is independent to the presence or absence of some other parameters, making each parameter’s 
contribution independent to the final result. For instance, for a parameter P(ADR = “Yes”) given “polypharmacy” 
= ‘Value from Test Data’ is independent of P(ADR = ‘No’) gives “polypharmacy” = ‘Value from Test Data’. In 
similar way, the probabilities of all the parameters and their individual contribution to the final result in different 
variables can be calculated. To deal with the condition of zero probability values for some parameter, Laplace 
Correction will be used. In order to handle the imbalance nature of the sample data, and create a highly accurate 
prediction model, the study adopts the adaptive boosting algorithm as meta-classifier by focusing on difficult data 
points which might have been misclassified most by the decision tree algorithm and the Naive Bayesian network 
classifier, using an optimally weighted majority vote, αt of these weak classifiers. 
Given m labeled training examples (x1, y1)… (xm, ym) where the xis are in some domain ꭓ, and the labeled yiЄ {-
1, +1}. On each round t=1,…,T, a distribution Dt is computed over the m training examples, and a given weak 
learner or weak leaning algorithm will be applied to find a weak hypothesis ht : ꭓ →{-1, +1}, where the aim of the 
weak learner is to find a weak hypothesis with the least weighted error Єt relative to Dt.. The final or combined 
hypothesis (classifier) H computes the sign of a weighted combination of weak classifies. That is to say that the 
final hypothesis H or classifier is computed as a weighted majority vote of the weak hypothesis βt, where each is 
assigned weight αt. 

                 𝐻 𝑥 𝑠𝑖𝑔𝑛 𝛼 𝛽      9  

Where the weak hypothesis βt are H(s) and P(c/x) gotten from equation (1) and equation (6) respectively. 
 αt is computed as: 

   αt  
1
2

ln
1 𝜀

𝜀
                         10  

Equation (9) then can be written as: 

𝐻 𝑥 𝑠𝑖𝑔𝑛
1
2

ln
1 𝜀

𝜀
𝑝 𝑡 𝐻 𝑡

𝑝 𝑥|𝑐 𝑝 𝑐
𝑝 𝑥

          11  

Where H(x) represent the final hypothesis, which produces the class prediction for ADR as ADR or a NO ADR. 

4. Simulation and Evaluation of the ADR Prediction Model 

This section presents a discussion on the simulate and evaluation of the performance of the ADR prediction model. 
This was done in view of understanding the behaviour of the ADR prediction model under various conditions. 
The process involves the adjustment of the input data ratios for training and testing of the ADR prediction model, 
using the hold-out cross-validation technique in order to avoid over-fitting by dividing the entire ADR dataset 
into two parts viz- training data and testing data. The model was trained using the training data and then 
evaluate on the testing dataset. The ratios of the training set to testing set of the ADR prediction model was 
on 70:30, 75:25 and 80:20 respectively. This allows the data to be first shuffled before performing the 
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training and testing at different data points. The evaluation was carried out using accuracy, precision, 
sensitivity, specificity and error rate as performance metrics, with special attention given to the precision 
and sensitivity of the model because the system under study contains imbalance data which was biased 
towards the negative cases of ADR, hence the quest for a solution that maximizes the precision and 
sensitivity of the ADR prediction model.  The various metrics present different explanation of the behaviour 
of the ADR prediction model.  

4.1: Framework of the Proposed ADR Prediction Model 

The Architecture of the proposed model for predicting ADR is as shown in Figure 1. The patients’ vital signs as 
well as diagnosis and corresponding drug prescriptions data were used to train the base classifiers. (Decision Tree 
and Naïve Bayes). The process considered the two variants of Decision Tree algorithm (Classification and 
Regression Tree (CART) and Iterative Dichotomiser 3 (ID3)), as well as the three variants of the Naïve Bayes 
(Gaussian Naïve Bayes (GaussianNB), Bernoulli Naïve Bayes (BernoulliNB) and the Multinomial Naïve Bayes 
(MultinoialNB)). An instance of the ADR prediction model takes one variant of the Decision Tree algorithm and 
one variant of the Naïve Bayes algorithm as base classifiers and use docking technique to fuse their outputs as 
inputs to the AdaBoost algorithm. The AdaBoost algorithm then assigns weights to the various data points, and 
higher weight to the misclassified points that were identified with higher prediction error. This was done for all 
possible combinations of the selected variants of the Decision Tree algorithm and all the selected variants of the 
Naïve Bayes algorithm, with their various outputs fused with AdaBoost algorithm. The final output from the 
AdaBoost algorithm at any one instance, predicts the occurrence or non-occurrence of the ADR result as depicted 
in Figure 2. The training and testing of each of the instances of the ADR prediction model was done on the data 
ratios of 70:30, 75:25, and 80:20 respectively, in order to have an in-depth understanding of the performance 
behaviour of the ADR prediction model. 

 

 
 

Figure 1: Proposed Framework for ADR Prediction 

5. Results and Discussion 

Computational learning theory is mainly concerned with how to precisely formulate and address questions 
regarding the performance of different learning algorithms so that careful comparisons of both the predictive 
power and the computational efficiency of alternative learning algorithms can be made [8]. This research utilised 
different machine learning algorithms to formulate a mathematical model to precisely predict the occurrence of 
adverse drug reactions in the midst of imbalance data. The study also simulated the model while also considering 
the different variants of the algorithms which attempt to explore the possibility of building a predictive model that 
would produce the best output among the variants of the selected machine learning algorithms. In order to have a 
meaningful ground for comparing the predictive power of each instance of the predictive models, the classifiers 
were first used individually to build the prediction model which were simulated at varying degrees of input for 
training and testing of the learning models. The careful comparison of the various models was based on their 
performance metrics (accuracy, precision, sensitivity, specificity and error rate) which were computed from the 
various confusion matrixes. 
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Table 2: Summary of Results from Decision Tree and Naïve Bayes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the face of imbalance data, the predictive power of the algorithms are with emphasis on results that maximizes 
the precision and sensitivity of the classifiers and at the same time minimizes the error rate of the classifier. 
Classification and Regression Tree (CART), Iterative Dichotomizer 3 (ID3), Gaussian Naïve Bayes 
(GaussianNB), Bernoulli Naïve Bayes (BernoulliNB) and the Multinomial Naïve Bayes (MultinomialNB) 
classifiers were used individually. The simulation results as shown in Table 2 
From the results, The ID3 algorithm demonstrated a consistent trend of enhancement across all measured metrics 
as the training set increased. Notably, its precision and sensitivity achieved their apex at the 75:25 ratio, suggesting 
an advantageous utilization of a larger portion of the dataset for training purposes. Conversely, the CART model 
showcased an optimal performance plateauing at the 70:30 ratio, implying a potential saturation point where 
increased data beyond this threshold may not yield substantial performance gains. 
The Naïve Bayes classifiers (GaussianNB, BernoulliNB, MultinomialNB) exhibited diverse patterns in response 
to changing training ratios. GaussianNB revealed erratic fluctuations across precision, sensitivity, and specificity, 
showcasing a delicate balance affected by training data distribution. BernoulliNB displayed a stable and optimal 
performance at the 70:30 ratio, maintaining consistent precision, sensitivity, and specificity levels, indicative of 
its reliability within that specific training range. MultinomialNB, while outperforming other classifiers overall, 
faced a slight decline in performance metrics as the training set expanded to 75:25, suggesting a potential 
limitation in accommodating larger training proportions. 
Upon thorough analysis, it becomes evident that the MultinomialNB classifier emerged as the most robust model, 
showcasing superior performance across multiple metrics, particularly at the 70:30 training ratio. However, this 
finding does not discount the significance of choosing the appropriate model and training ratio based on the 
specific requirements of the task at hand. While larger training datasets generally benefited model performance, 
the saturation point observed in some models at certain ratios warrants careful consideration. 
The analysis of the individual results showed that MultinomialNB classifier exhibited commendable performance, 
achieving the best balance of precision and sensitivity at the 70:30 ratio, the choice of an ideal model and training 
ratio should be contingent upon the application's unique demands. This comprehensive analysis underscores the 
importance of judiciously selecting both model types and training ratios to optimize predictive performance while 
considering the nuances of dataset characteristics and desired performance metrics. 
However, in order to handle the imbalance data, boosting method was applied using an ensemble of the variants 
of Decision Tree and the variants of Naïve Bayes algorithms as base classifiers and AdaBoost algorithm as meta-
classifier. The idea of boosting originated from the computational learning theory, upon which this research was 
based. The quest here is to see that the error of the combined classifiers on the training data approaches zero very 
quickly as more and more iterations are performed. The simulations integrating various Decision Tree variants 

 Ratio ID3 CART GNB BNB MNB 

Accuracy 
(%)  

60/40 79.6 82.0 74.1 77.1 80.8 

70/30 84.2 85.1 84.3 84.3 85.1 

75/25 88.8 85.1 78.2 84.3 81.1 

Precision 
(%) 

60/40 56.2 62.5 71.9 68.7 75.0 

70/30 58.3 62.5 75.0 70.8 75.0 

75/25 65.0 62.5 70.0 70.8 75.0 

Sensitivity 
(%) 

60/40 48.6 54.0 41.1 44.9 51.1 

70/30 60.8 62.5 58.1 58.6 75.0 

75/25 72.2 62.5 46.7 58.6 55.5 

Specificity 
(%) 

60/40 85.0 86.9 74.6 79.2 82.3 

70/30 90.7 90.7 86.6 87.6 87.6 

75/25 93.8 90.9 80.2 87.6 82.7 

Error Rate 60/40 0.203 0.179 0.259 0.220 0.191 
70/30 0.157 0.148 0.157 0.157 0.149 

75/25 0.118 0.148 0.128 0.157 0.157 
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(such as ID3 and CART) and Naïve Bayes classifiers (like MultinomialNB, GaussianNB, and BernoulliNB) with 
AdaBoost present valuable insights into ensemble learning's impact on predictive modeling in healthcare, 
particularly in adverse drug reaction (ADR) prediction. 
The experiments consistently show that integrating AdaBoost with different algorithms leads to enhanced 
predictive accuracy as the training set grows. This trend suggests that a larger volume of training data contributes 
positively to overall model accuracy. 
Across the combinations, there was a notable interplay between precision and sensitivity concerning the training 
ratio. Some combinations exhibit peak precision and sensitivity at specific training ratios, indicating the 
importance of finding the optimal balance between correctly predicting positive instances (sensitivity) and 
avoiding false positives (precision). The specificity of the models, representing their ability to accurately predict 
negative instances, demonstrates an increasing trend with more extensive training sets.  Simultaneously, the error 
rates consistently reduce, indicating improved overall model performance and reliability. Different combinations 
display diverse behaviors concerning their accuracy, precision, sensitivity, and specificity. While some 
combinations exhibit clear patterns of improvement with increasing training data, others show fluctuations or 
plateauing in certain metrics, highlighting the significance of selecting the appropriate combination for optimal 
performance. Among the combinations tested, the ensemble of ID3, MultinomialNB, and AdaBoost stands out 
with its remarkable accuracy of 95.0%. This combination showcases balanced precision and sensitivity, making 
it highly suitable for handling imbalanced data in clinical settings. Healthcare Decision Support These findings 
have significant implications for healthcare decision-making. The ensemble models' accuracy and ability to handle 
imbalanced data suggest their potential in assisting clinicians in predicting adverse drug reactions more accurately, 
thereby improving patient care. 
 

Table 3. Result summary from ADR prediction model using DT and NB with AdaBoost algorithms 

 

 
The precision of models, representing the proportion of true ADRs among those predicted as ADRs, showed 
fluctuations across models and training ratios. Similarly, sensitivity, which measures the proportion of actual 
ADRs correctly predicted, varied, indicating the models' differing abilities to detect true ADR occurrences. 
Furthermore, specific combinations like CART, MultinomialNB, and AdaBoost displayed noteworthy precision 
and sensitivity at a 70:30 ratio, signifying a balanced performance with a moderate training dataset. 
Generally, while certain models and combinations demonstrated consistent improvement in performance metrics 
with increased training data, others showed fluctuating trends. The effectiveness of these models in predicting 
ADRs represent the complexity of handling imbalanced datasets, where a careful balance between precision, 
sensitivity, and accuracy is pivotal. The remarkable performance of the ID3, MultinomialNB, and AdaBoost 

Performance 
Metrics 

Data 
Ratio 

Adaboost 
ID3 
GNB 

Adaboost 
ID3 
BNB 

Adaboost 
ID3 
NB 

Adaboost 
CART 
GNB 

Adaboost 
CART 
BNB 

Adaboost 
CART 
MNB 

60/40 87.0 87.0 92.6 85.8 88.8 90.7 

Accuracy 70/30 88.4 88.4 94.2 86.7 80.7 92.6 

(%) 75/25 91.1 91.1 95.0 89.1 89.1 94.1 

Precision 60/40 81.2 81.2 84.4 75.0 75.0 81.3 

(%) 70/30 79.1 79.1 87.5 75.0 75.0 83.3 
 

75/25 75.0 75.0 85.0 75.0 75.0 80.0 

Sensitivity 60/40 63.3 63.3 79.4 61.6 61.5 76.5 

(%) 70/30 67.9 67.9 84.0 64.3 64.3 80.0 

 75/25 82.6 82.6 89.5 71.4 71.4 88.0 

Specificity 60/40 88.5 88.5 94.6 88.5 83.5 93.1 

(%) 70/30 90.7 90.7 95.9 89.9 89.9 94.8 

 75/25 95.0 75.1 97.5 92.6 92.6 97.5 

Error Rate 60/40 0.129 0.129 0.074 0.142 0.142 0.093 

 70/30 0.016 0.116 0.058 0.132 0.132 0.074 

 75/25 0.089 0.089 0.049 0.109 0.098 0.059 
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ensemble suggests its potential for practical application in clinical settings for ADR prediction. However, the 
varying performance across different models also emphasizes the importance of considering the context, dataset 
characteristics, and the trade-offs between different evaluation metrics when selecting the most appropriate model 
for real-world implementation. 

Conclusion 

The research embarked on a meticulous exploration of diverse machine learning models to predict Adverse Drug 
Reactions (ADRs) within imbalanced datasets, employing rigorous evaluation metrics encompassing accuracy, 
precision, sensitivity, specificity, and error rates. This comprehensive analysis aimed to discern the strengths and 
weaknesses of each model in handling the intricacies of imbalanced data, specifically in the realm of ADR 
prediction. Among the myriad models scrutinized, an ensemble comprising ID3, MultinomialNB, and AdaBoost 
emerged as a standout performer, consistently showcasing exceptional performance across multiple metrics. 
Notably, this ensemble demonstrated an outstanding accuracy rate of 95.0% when trained with a 75:25 ratio of 
data, exhibiting a remarkable ability to discern and predict ADR occurrences accurately. This finding is promising 
for its potential application within clinical settings, signifying the ensemble's robustness in identifying adverse 
reactions to pharmaceutical interventions, thus enabling proactive management and intervention strategies 
Furthermore, the research elucidated a critical facet in model performance: the influence of training dataset sizes 
on predictive capabilities. While some models exhibited steady and incremental improvements in accuracy, 
precision, sensitivity, and specificity metrics with increased training data, others displayed varying trends or less 
pronounced patterns. This observation shows the importance of optimizing models through sufficient and 
balanced training datasets, an aspect particularly relevant in the context of imbalanced datasets characteristic of 
ADR prediction scenarios. The study therefore advocated for the adoption of diverse techniques and ensemble 
approaches to effectively address the challenges posed by imbalanced datasets in ADR prediction. Essentially, it 
emphasized the efficacy of employing resampling methods within ensemble classifiers, highlighting their 
potential to mitigate data imbalance issues and enhance the predictive accuracy of models in clinical applications. 
Furthermore, his research significantly contributes to the burgeoning field of machine learning in healthcare by 
not only identifying a superior model ensemble for ADR prediction but also by emphasizing the nuanced interplay 
between dataset characteristics and model performance. It serves as a foundational guide for practitioners and 
researchers navigating the complexities of predictive analytics in clinical settings, and offering insights into 
optimal model selection and the importance of dataset balance and diversity. 
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