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Abstract 

With the rapid development of UAVs, vehicle detection from UAV-based aerial images has become 
important in intelligent traffic management and traffic safety monitoring systems. Recently, several studies 
have straight-forwardly adopted cutting-edge CNN-based object detection methods for this problem and 
demonstrated their effectiveness. High-accuracy methods, however, typically have a lot of parameters and 
a slow detection speed. The trade-off between accuracy and detection speed has not been well investigated. 
In this paper, we present a comparative evaluation of several real-time object detection models from the 
YOLO family, including YOLO-v5, YOLO-v6, YOLO-v7, and YOLO-v8, for aerial imagery. To compare 
the models’ accuracy and complexity, experiments are conducted on the datasets VisDrone and Aeriau. 
The advantages and disadvantages of each model are also discussed. 

Keywords: Vehicle Detection; YOLO; Aeriau Dataset; VisDrone2019. 

1. Introduction 

Vehicle detection is a crucial component of an intelligent traffic management system. These systems 
conventionally use surveillance cameras for detecting vehicles. Because surveillance cameras have limited 
viewing angles, they cannot capture large traffic scenes. Compared with traditional surveillance cameras, 
unmanned aerial vehicles (UAVs) with moving cameras have several advantages, such as easy deployment, high 
mobility, and a large viewing range. To have a large viewing area, the UAVs need to fly at high altitudes, which 
pose many challenges for detecting small vehicles. Figure 1 demonstrates the vehicle detection problem based on 
UAVs. 

Several cutting-edge CNN-based object detection methods can detect small objects, but they need to adopt a 
large backbone network to extract robust features. This makes the network inference time low and cannot work 
well for systems that require real-time processing. Recently, YOLOs have been proposed with high accuracy and 
real-time detection capability. Particularly, there are different YOLO models from v1 to v8, and they have some 
differences in both the backbone network and detection techniques. In this paper, we adopted different YOLO 
models for vehicle detection on UAV-based aerial images to analyze their accuracy and detection speed. 
Specifically, the contributions of our paper are twofold: firstly, we conduct a comprehensive evaluation of three 
YOLO models, including YOLO-v5 [1], YOLO-v6 [2], YOLO-v7 [3], and YOLO-v8 [4] for vehicle detection on 
two aeriau datasets, VisDrone [5] and Aeriau [6]; secondly, we show the trade-off between the evaluated models’ 
accuracy, detection speed, and model complexity. The pros and cons of each model are also demonstrated by 
investigating the detection results. 
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2. Related works 

2.1.  Object detection 

Object detection is one of the main tasks of computer vision. The goal is to classify and mark objects of interest 
with bounding boxes if they are present in the photo or video. This problem is widely applied across all fields and 
has many useful applications, such as security monitoring, people counting, traffic monitoring, pedestrian 
detection, self-driving cars, etc. Typical approaches to this problem include using machine learning techniques 
such as SVM [8] or deep CNN-based networks such as Faster-RCNN [9], and YOLO [10]. Figure 2 shows the 
architecture of a general CNN-based object detection method. The architecture consists of the following main 
parts: backbone, neck, dense prediction, and sparse prediction. Backbone is a CNN network that is utilized to 
extract features from input images. The architecture of this network significantly affects inference time because 
it carries the majority of the computational cost. Neck is used to combine low-level features and high-level 
semantic features, then build a pyramid feature map of all levels. The head part includes several convolutional 
layers to infer predictions based on the pyramid of features concatenated by the neck part. Single-stage object 
detection methods like YOLO [10] or RetinaNet [11] utilize dense prediction heads, while two-stage object 
detection methods like Faster R-CNN [9] use sparse prediction heads. 

There are two main approaches for CNN-based object detection: one-stage models and two-stage models. In 
one-stage models [10], [11], the process of detecting and localizing objects takes place in a single step. This differs 
from the two-stage method, in which detection and localizing are performed in two separate steps. The advantage 
of these methods is that they are faster than two-stage methods and hence suitable for real-time applications. 
However, their ability to detect small and occluded objects may not be as accurate as two-stage methods. 

 
 

Fig. 1. Illustration of UAV-based vehicle detection. 
 

 
Fig. 2. Architecture of the object detection model [7]. 

2.2.  Vehicle detection from UAV-based aeriau images 

Several studies have recently used deep networks to tackle UAV-based vehicle detection challenges. Faster 
R-CNN has been successfully employed by Xu et al. [12] to detect cars from low altitude. Similar to this, Wang 
et al. [13] examined various backbone networks and developed an improved Faster R-CNN for detecting cars 
from UAV images. Additionally, Raza et al. [14] utilized RetinaNet, a well-known object detector, which boosted 
the accuracy of small vehicle detection. Other effective object detectors were also used in several studies, like 
TridentNet [15] or DetNet [16]. The accuracy of the best methods remains limited when detecting small objects 
at high altitudes. Only about 30% AP is achieved by the best algorithms on the VisDrone-DET 2018 dataset [17].  

Several studies used fast object detection networks to address real-time drone-based vehicle detection. Tang 
et al. [18] examine the detection accuracy and speed of YOLO-v1 [10], and YOLO-v2 [19]. The YOLO-v2 model 
is the fastest and most accurate according to experiment results. Later, Faster R-CNN [9], YOLO-v3 [20], and 
YOLO-v4 [7] were compared by Ammar et al. [21]. Among the evaluated methods, YOLO-v4 had the fastest 
detection speed and the best accuracy. The YOLO family has recently significant upgrades, including YOLO-v5 
[1], YOLO-v6 [2], YOLO-v7 [3], and YOLO-v8 [4]. Nevertheless, there aren’t many papers that compare these 

Detection 
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cutting-edge models for UAV images. To demonstrate the effectiveness of these models, we conducted thorough 
evaluations for this study. 

3. Network architectures of Yolo-v5, Yolo-v6, and Yolo-v7 

YOLO-v5: YOLO-v5 [1] was presented in 2020 as an improvement of YOLO-v4 and YOLO-v3. Figure 3(a) 
demonstrates the YOLO-v5’s network. Regarding the network architecture, the author replaced 
CSPResidualBlock in the backbone of YOLO-v4 [7] with a C3 module. The neck part consists of two parts: spatial 
pyramid pooling fast (SPPF) and PAN. The head part retains the same architecture as YOLO-v3. However, to 
determine the target coordinates for the bounding boxes, YOLO-v5 utilized a different equation from the previous 
version, as follows: 

⎩
⎪
⎨

⎪
⎧

𝑏௫ ൌ ሺ2 ∗ 𝜎ሺ𝑡௫ሻ െ 0.5ሻ ൅ 𝑐௫

𝑏௬ ൌ ൫2 ∗ 𝜎൫𝑡௬൯ െ 0.5൯ ൅ 𝑐௬

𝑏௪ ൌ 𝑡௪ ∗ ൫2 ∗ 𝜎ሺ𝑡௪ሻ൯
ଶ

𝑏௛ ൌ 𝑡௛ ∗ ൫2 ∗ 𝜎ሺ𝑡௛ሻ൯
ଶ

      (1) 

 
where 𝑏௫, 𝑏௬, 𝑏௪, 𝑏௛ are coordinates of bounding boxes and 𝑡௫, 𝑡௬, 𝑡௪, 𝑡௛ are the the relative offsets compared 
with a particular anchor box.  

In addition, the authors propose a number of new data enhancement techniques, including fragment 
enhancement, copy-paste enhancement, random affine transformation, and mixing enhancement. The neck 
block’s PAN has three outputs to detect objects at three different scales. At each scale, the effect on object loss is 
different, so a scaling factor is added for the object’s loss to the loss function. YOLO-v5 [1] uses the k-means 
algorithm to group the actual bounding boxes into clusters and then uses the centroids of the clusters as the 
bounding box. This bounding box is called the dynamic bounding box. This allows bounding boxes to be aligned 
to better match the shape and size of detected objects. In the training stage, the weight update process will follow 
the exponential moving average formula. 

 

 
(a) The YOLO-v5’s network architecture [22]. 

 

 
(b) The YOLO-v6’s network architecture [2]. 
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(c) The YOLO-v7’s network architecture [23]. 

 

 
(d) C2f block module in YOLO-v8’s network architecture [24]. 

 
Fig. 3. Network architectures of YOLO-v5, YOLO-v6, YOLO-v7 and YOLO-v8. 

 
YOLO-v6: YOLO-v6 [2] was introduced in 2022 by Meituan. Figure 3(b) shows the network architecture of 

YOLO-v6. YOLO-v6 proposed an efficient backbone network based on RepVGG called EfficientRep, which uses 
parallel computing. The neck part is a PAN topology, also known as Rep-PAN, using PAN augmented with 
RepBlocks (small models) or CSPStackRepBlocks (large models). Additionally, it simplifies the decoupled head 
to make it more efficient, titled Efficient Decoupled Head. In YOLO-v6, the authors utilize a label assignment 
strategy based on the Task Alignment Learning method. In addition, YOLO-v6 also improves the quantization 
scheme by using RepOptimizer and channel-wise distillation to help reduce model size and improve detection in 
both speed and accuracy. The loss function in object detection includes classification loss, box regression loss, 
and optional object loss. The classification loss function uses VariFocal loss [25], while the regression loss uses 
SIoU/GioU [26]. A self-distillation strategy based on KL-divergence is also employed to help the network 
automatically adapt knowledge from teachers. The knowledge distillation loss can be computed as follows: 

 
𝐿௄஽ ൌ 𝐾𝐿 ሺ𝑝௧

௖௟௦|| 𝑝௦
௖௟௦) +   𝐾𝐿 ሺ𝑝௧

௥௘௚|| 𝑝௦
௥௘௚),                                               (2)                            

                                                                                                               
where 𝑝௧

௖௟௦ and 𝑝௦
௖௟௦  are predicted class, and 𝑝௧

௥௘௚ and 𝑝௦
௥௘௚ are predicted bounding box of the teacher model and 

the student model respectively 
YOLO-v7: YOLO-v7 [3] was proposed in 2022 by WongKinYiu and Alexey Bochkovskiy. The network 

architecture of YOLO-v7 is shown in Figure 3(c). The main contribution of this model is the optimization of the 
training process and network architecture. Specifically, the author designs several bag-of-freebies methods for 
training that include modules and optimization methods, which significantly improve detection accuracy but do 
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not increase the cost of inference. The network architecture uses the E-ELAN strategy, which enables a deep 
model to learn and converge more effectively by controlling the longest and shortest gradient paths. In order to 
enhance the learned features, the E-ELAN method combines the features of the groups together by shuffling and 
merging schemes. It also reduces the number of parameters and the calculation cost. In addition, YOLO-v7 
introduces a number of other training bag-of-freebies including: (1) Utilizing Connection-Aware RepConv 
(RepConvN) to design the architecture of planned re-parameterized convolution; (2) Adopting a new labeling 
method that guides both auxiliary head and lead head; (3) Normalizing data in conv-bn-activation topology. (4) 
Combining both addition and multiplication in convolution on a feature map. (5) Applying the EMA model as the 
final inference model. 

YOLO-v8: The latest, YOLO-v8, featuring several additional improvements, was introduced by Ultralytics 
in 2023. The C2F module carries the first significant part. Figure 3(d) illustrates the C2f module’s architecture. 
Via the utilization of YOLO-v5’s CSP backbone, YOLO-v8 replaced the C3 module with the C2f module. Next, 
for classification and regression tasks, YOLO-v8 subsequently adopts an anchorfree technique with task alignment 
learning. Furthermore, it eliminates the objectness branch from the network and uses the decoupled head for 
regression and classification. VFL loss and DFL loss are adopted for classification and regression tasks, 
respectively. By using an asymmetric weighting technique, VFL is able to resolve data imbalances between 
positive and negative samples. The formula is presented as follows: 

 

                                            𝑉𝐹𝐿ሺ𝑦, 𝑦ොሻ ൌ  ൜
െ𝑦ො ∗ ሺ𝑦ො ∗ logሺ𝑦ሻ ൅ ሺ1 െ 𝑦ොሻ ∗ logሺ1 െ 𝑦ሻሻ, 𝑦ො ൐ 0

െ𝛼 ∗ 𝑦ఒ ∗ logሺ1 െ 𝑦ሻ , 𝑦ො ൌ 0 
                              (3)                             

 
where y is the label and yˆ is the predicted value. DFL is a form of cross entropy which optimizes the probability 
of the two positions that are closest to the label. In this way, the network can focus on the target’s nearby area 
quickly. The formula is presented as follows: 
 
                                                𝐷𝐹𝐿ሺ𝑆௜, 𝑆௜ାଵሻ ൌ  െሺሺ𝑦௜ାଵ െ 𝑦ሻlog ሺ𝑆௜) + (y-𝑦௜ሻlog ሺ𝑆௜ାଵሻ                                          (4)                             

4. Datasets 

4.1.  Visdrone-2019 dataset 

VisDrone-2019 [5] is a well-known aerial imagery dataset created by the AISKYEYE team. The images are 
taken from 14 different cities in China, in different environments (urban and rural) with various congested levels. 
The ground-truths are provided for five computer vision tasks: object detection on images (VisDrone-DET-2019), 
object detection on video, single object surveillance, multi-object surveillance, and crowd counting. For our 
evaluation, we use the the VisDrone-DET2019 which consists of 8,629 images with 10 classes (pedestrian, people, 
bicycle, car, van, truck, tricycle, awning-tricycle, bus, motor) with 457,066 labeled objects. In particular, the 
training set has 6,471 images (343,205 labeled objects), the validation set has 548 images (38,759 labeled objects), 
and the test set has 1,610 images (75,102 labeled objects). 

4.2.  Aeriau dataset 

The Aeriau dataset [6] was created in 2020 by Chung et al. This dataset is a combination of three aerial imagery 
datasets: VisDrone-2018, KIT AIS, and Aerial Open Source. The data set includes 1,658 images with 4 classes 
(car, truck, bus, motor) and 63,185 labeled objects. In particular, the training set contains 1,179 images (46,502 
labeled objects), the validation set contains 295 images (11,581 labeled objects), and the test set contains 184 
images (5,102 labeled objects). 

5. Experiments and results 

5.1. Experimental settings 

The experiments were conducted on an Ubuntu 20.04.1 LTS operating system machine with 4 GeForce GTX 
2080ti 12GB GPUs. All the models are trained with 300 epochs. We set the batch size to 8. Other hyper-parameters 
of the YOLO models are kept as originally. 

5.2. Evaluation metrics 

We adopted the Mean Average Precision (mAP) metric, which is employed in conventional object detection 
benchmarks, e.g MS-COCO [27], to evaluate the accuracy of all methods. This metric is calculated using the 
following formula: 

                                          𝑚𝐴𝑃 ൌ  
ଵ

௡
 ∑ 𝐴𝑃𝑐௜

௡
௜ୀଵ  ;  𝐴𝑃𝑐௜ = 

ଵ

௠
 ∑ 𝑃𝑐௜௝

௠
௝ୀଵ                                                            (5) 
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where mAP is mean Average Precision of all classes, 𝑛 is the number of classes, and 𝑚 is the number of images. 
𝐴𝑃௖೔

 is the Average Precision (AP) of the class 𝑐௜ . 𝑃௖೔ೕ
 is the precision for class 𝑐௜ on the 𝑗th image, which is 

computed as: 𝑃௖೔ೕ
 = (𝑇𝑃௖೔ೕ

)/( 𝑇𝑃௖೔ೕ
+ 𝐹𝑃௖೔ೕ

). 𝑇𝑃௖೔ೕ
 denotes the true positive bounding boxes and 𝐹𝑃௖೔ೕ

 denotes the 

false positive bounding boxes. It is necessary to select an IoU threshold to determine the true/false positive 
bounding boxes. We can use a single value, e.g 50 (abbreviated as 𝑚𝐴𝑃ହ଴

௧௘௦௧), or a range, e.g, from 50 to 95 in step 
5 (abbreviated as 𝑚𝐴𝑃ሺହ଴:ଽହሻ

௧௘௦௧ ), then calculate the mAP for this range and get the mean value. We evaluated the 
models by both measures 𝑚𝐴𝑃ହ଴

௧௘௦௧ and 𝑚𝐴𝑃ሺହ଴:ଽହሻ
௧௘௦௧ . 

5.3. Results 

Table I shows the results of the evaluated models on the Aeriau dataset. We find that the YOLO-v6L model 
obtains the best results, scoring 67.1% and 47.9% in terms of 𝐴𝑃ହ଴

௧௘௦௧ and 𝐴𝑃ሺହ଴:ଽହሻ
௧௘௦௧ , respectively. Additionally, 

with mAPs of 87.5% and 23.3%, the bus and motorbike classes exhibit the best 𝐴𝑃ହ଴
௧௘௦௧ scores for this model. With 

mAPs of  94.1% and 75.2%, the YOLO-v7x model gave the best 𝐴𝑃ହ଴
௧௘௦௧ scores for the car and truck classes. The 

newest member of the YOLO family, YOLO-v8, does not perform as well as YOLO-v6 and YOLO-v7. Even 
though the YOLO-v6L model has the greatest mAP values on the Aeriau data set, its accuracy on the bus and 
motorbike object classes is lower than that of the YOLO-v7x model.  

The detection results for each image in the test set of the Aeriau dataset are shown in Figure 4. Despite the 
fact that all three YOLO models correctly detected and located almost all of the automobiles, trucks, and buses, 
there is still uncertainty in the classification of these three object classes. The YOLO-v5x, YOLO-v6L, and 
YOLO-v8x models either failed to detect or incorrectly classified the motorbikes, whereas the YOLO-v7x model 
detected them more accurately.  

According to the results on Table II, the YOLO-7x model outperforms the YOLO-v5x, YOLO-v6L, and 
YOLO-v8x models across all metrics on VisDrone dataset. Additionally, compared to large objects (cars, trucks, 
and buses), the detection accuracy for small objects (bikes, people) is lower. Note that the test set of the VisDrone 
dataset (1,610 images) is larger than the Aeriau dataset (184 images), and its images contain many complex 
situations taken from cameras in weather and lighting conditions. Additionally, this dataset has a lot of congested 
scenes, which causes objects to overlap, resulting in missed detections or incorrectly matched bounding boxes, as 
seen in Figure 5. The YOLO-v5x, YOLO-v6L, YOLO-v7x, and YOLO-v8x models are able to detect pedestrians, 
cars, trucks, and motorbikes. Nevertheless, drivers of motorbikes are considered as well as objects belonging to 
the people or pedestrian class, as shown in Figure 6. This yields the incorrect detection results.  

 

Methods 
Parameters 

(M) 
FLOPs 

(G) 
Detection 

speed  (FPS) 
𝐴𝑃ହ଴

௧௘௦௧ classes (%) 
𝑚𝐴𝑃ହ଴

௧௘௦௧ 𝑚𝐴𝑃ହ଴:ଽହ
௧௘௦௧  

Car Truck Bus Motor 
YOLO-v5x 86.19 203.8 33 90.7 60.6 86.8 23.0 65.3 47.3 
YOLO-v6x 59.54 150.51 115 93.6 65.3 87.5 23.3 67.4 48.0 
YOLO-v7x 70.80 188.0 74 94.1 75.2 65.0 16.5 62.7 43.5 
YOLO-v8x 68.12 257.4 43 86.2 41.6 51.2 19.7 49.7 36.5 

TABLE I. Experimental results on the test set of the Aeriau dataset. 

 

Methods 
𝐴𝑃ହ଴

௧௘௦௧ classes (%) 
𝑚𝐴𝑃ହ଴

௧௘௦௧ 𝑚𝐴𝑃ହ଴:ଽହ
௧௘௦௧

pedes. 
peop

le 
bike car van truck tricycle 

awn-
tricycle 

bus motor 

YOLO-v5x 30.5 17.7 10.9 71 36.2 41.1 13.9 15.4 58.5 29 32.4 18.8 
YOLO-v6x 29.1 14.1 13.1 73.8 40.8 48.4 21.1 21.0 62.8 32.3 35.7 21.0 
YOLO-v7x 40.7 28.6 17.8 79.5 42.5 54.7 28.7 25.5 63.8 43.1 42.5 24.0 
YOLO-v8x 34.2 18.1 14.8 74.9 41.5 50.0 20.7 23.1 63.3 37.6 37.8 22.6 

TABLE II: Experimental results on the test set of the VisDrone dataset. 

  
Methods Input image size 𝑚𝐴𝑃ହ଴

௧௘௦௧ 𝑚𝐴𝑃ହ଴:ଽହ
௧௘௦௧  

YOLO-v5x 

640x640 

32.4 18.8 
YOLO-v6x 35.7 21.0 
YOLO-v7x 42.5 24.0 
YOLO-v8x 37.8 22.6 
YOLO-v5x 

1280x1280 

37.9 22.4 
YOLO-v6x 45.5 26.9 
YOLO-v7x 47.8 27.2 
YOLO-v8x 43.1 26.2 

TABLE III: Accuracy comparison of YOLO models for varying input image sizes on VisDrone dataset. 
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(a) The YOLO-v5x model detected a motorcycle but 

made lots of mistakes in classifying the truck as a 
car. 

(b) The YOLO-v6L model detected a motorcycle but 
made lots of mistakes in classifying the truck as a car. 

       
(c) Two motorcycles were found using the YOLO-v7x 
model, but many more remain undetected. It still 
struggles to distinguish a truck from a car. 
 

(d) YOLO-v8x model failed to detect most 
motorcycles and mis-detected four cars. 

Fig. 4: Visualization of images of YOLO models on the Aeriau dataset [6]. 

 

       
(a) The YOLO-v5x model mis-detected two trucks 
and had a mismatched bounding box.  

(b) The YOLO-v6L model mis-detected a truck. 

     
(c) The YOLO-v7x model mis-detected a truck and 
predicted two mismatched bounding boxes. 

(d) Many mismatched bounding boxes are predicted 
by YOLO-v8. 
 

Fig. 5: On the VisDrone dataset, overlapping objects can lead to mistakenly predicted  
bounding boxes or being unrecognized by the YOLO models. 
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(a) Detection results of YOLO-v5x model. (b) Detection results of YOLO-v6L model. 
  

        
c) Detection results of YOLO-v7x model. (d) Detection results of YOLO-v8x model. 

 
Fig. 6: Visualization of images predicting whether the vehicle driver is a pedestrian or human when testing YOLO models on the VisDrone 

dataset [5]. 

We also calculated the number of parameters (in million), floating-point operations per second (in FLOPS), 
and detection time (in frames per second, or FPS) for each model in order to compare the accuracy and detection 
speed of YOLO models. Table I shows the results. We observe that the YOLO-v6L model, which has 59.54M 
parameters and can detect vehicles at a speed of 115 frames per second, is the lightest model. This is significantly 
faster than YOLO-v5x and YOLO-v7x, by five times and nearly two times, respectively. It should be noted that 
YOLO-v6L also achieves the highest accuracy on the Aeriau dataset and the second-highest accuracy on the 
VisDrone dataset. On the VisDrone dataset, the YOLO-v7x model has the highest accuracy, but because it requires 
a large number of parameters, its detection speed is substantially slower than the YOLO-v6L model’s. Figure 7 
visualizes the number of parameters, detection speed, and accuracy of four models on the VisDrone dataset. 

 
Fig. 7: Visualization of accuracy, detection speed, and the number of parameters for three YOLO models. 

 
YOLO models detect and localize objects using an input image of a fixed size. This size is important, 

particularly when detecting small vehicles from drones. As a result, we further investigate in this work how 
different input sizes affect the effectiveness of all YOLO models. The results from Visdrone datasets with two 
input image sizes-640×640 pixels and 1280×1280 pixels-are presented in Table III. In terms of 𝑚𝐴𝑃ହ଴

௧௘௦௧ , the 
results of all models on the larger input image size (1280x1280) are much better than those on the smaller input 
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image size (640x640), ranging from 5.3% (YOLO-v7x) to 9.8% (YOLO-v6L). Therefore, just using a large input 
image size is necessary for aerial imagery-based vehicle detection. 

 

6. Conclusions 

In this study, we compared the effectiveness of the four YOLO models, YOLO-v5, YOLO-v6, YOLO-v7, and 
YOLO-v8. Based on our evaluations using the VisDrone and Aeriau datasets, we prove that YOLO-v6 and 
YOLO-v7 had the highest accuracy. The model with the fewest parameters and smallest FLOPs, YOLO-v6, is the 
fastest. This should be the best choice for highly accurate real-time vehicle detection. The newest member of the 
YOLO family, YOLO-v8, does not perform as well on aerial photography as earlier versions, such as YOLO-v6 
and YOLO-v7. The disadvantage of the evaluated models is that while they are good at detecting large objects 
like cars, trucks, and buses, their precision for small objects is still quite poor. The classification of several object 
classes, such as cars and trucks, is still incorrect. The accuracy of YOLO models for the remaining issues identified 
above will be our primary focus for future studies. 
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