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Abstract 
Malaria poses a substantial global public health threat, with 247 million reported cases and 619,000 
deaths in 2021 alone, according to the World Health Organization. Identifying biomarkers is crucial for 
effective clinical intervention. This study focused on exploring protein-protein interaction (PPI) networks 
to identify significant proteins associated with malaria. Using RNA-seq gene expression data from the 
Gene Expression Omnibus, 92 unique malaria-related genes were filtered and subjected to network 
topology and enrichment analysis. Centrality analysis identified MMP9, LCN2, LTF, SPP1, COL6A1, 
MMP8, SDC1, TEK, COL17A1, and CEACAM8 as the top ten proteins with the highest centrality. 
Subsequent enrichment analysis highlighted SDC1 as a prominent malarial biomarker. This integrated 
approach contributes to a deeper understanding of malaria and holds the potential for informing targeted 
therapeutic developments, emphasizing the importance of advancing our knowledge in combating this 
life-threatening disease. 
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1. Introduction 

Malaria is a highly serious and potentially fatal global health problem. According to the latest report from 
the World Health Organization (WHO) in the 2022 World Malaria Report, malaria cases reached 247 million in 
2021, with a death toll of 619,000 [WHO (2022)]. In the same year, sub-Saharan Africa contributed nearly 95% 
of all malaria cases and approximately 96% of all deaths caused by this disease. Almost 80% of these deaths 
occur in children under the age of 5 years [Oladipo et al. (2012)]. On the other hand, the South-East Asia 
Region reported approximately 5.4 million malaria cases, contributing 2.1% to the total global malaria cases, 
while the Eastern Mediterranean Region recorded 6.2 million cases, contributing 2.5% to the total global 
malaria cases  [WHO (2022)]. 

Malaria is an illness caused by protozoa that spreads through Anopheles mosquitoes [White et al. (2014)]. 
The causative agent for malaria is a tiny protozoan organism found within the Plasmodium species group, which 
includes multiple subspecies [Talapko et al. (2019)]. Among the five parasite species that cause malaria, 
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Plasmodium falciparum is responsible for the majority of malaria cases worldwide. One of the main challenges 
in managing malaria is the identification of reliable biomarkers. 

According to Hulka et al. (1991), biomarkers are alterations occurring at the cellular, biochemical, or 
molecular level that are detectable in biological samples and signify biological, pathogenic, or therapeutic 
reactions. Biomarkers are specific biochemical molecules found in the body of individuals infected with 
malarial parasites. These molecules serve as indicators or markers for identifying the presence of malaria 
infection within an individual. Biomarkers play a crucial role not only in managing diseases but also in devising 
strategies before the occurrence of the disease, especially in the context of asymptomatic malaria [Jain et al. 
(2014)]. Identifying reliable and specific biomarkers for malaria can aid in timely and efficient diagnosis, 
enabling more effective management. 

Network analysis offers a comprehensive method for comprehending the complexity of diseases, where 
nodes can symbolize various biological elements, such as genes, proteins, and metabolites, and edges can 
represent gene co-expression, physical protein-protein interactions, and other biological relationships in 
biological contexts [Alfano et al. (2023)]. Network topology refers to the distribution or organization of various 
network components, encompassing the relationships between these components, such as the connections and 
interfaces they utilize [Wu and Buyya (2015)]. Mistry et al. (2017) stated that centrality measures can be 
employed as features representing the influence of a node in interaction networks. 

Enrichment analysis is widely employed to functionally analyze extensive gene lists identified using high-
throughput technologies, such as expression microarrays [Machado et al. (2013)]. Functional enrichment 
analysis utilized Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) resources [Fan 
and Hu (2022)]. Gene Ontology (GO) is an established bioinformatics instrument employed to delineate the 
attributes of gene products in various species. It encompasses three distinct dimensions for characterizing 
protein function: molecular function, cellular components, and biological processes [Thomas (2017)]. 
According to Kanehisa and Goto (2000), the Kyoto Encyclopedia of Genes and Genomes (KEGG) is a system 
in which functional assignments involve connecting a group of genes within the genome to a network of 
interacting molecules in the cell, such as a pathway or a complex. 
In line with Duffy et al. (2021) research, this study employed whole blood RNA sequencing, gene set 
enrichment analysis, and temporal modeling to identify potential markers for individual vaccine responses and 
comprehend the systemic immune responses to PfRAS vaccination. In this study, we investigated the immune 
responses in whole blood following a malaria challenge in participants administered the P. falciparum RAS 
vaccine. This study aimed to explore potential malarial disease biomarkers using an integrated approach 
involving network topology and enrichment analysis. This approach is expected to aid the identification of 
significant proteins associated with malaria. Hence, this research holds highly relevant objectives in global 
efforts to address the burden of malaria, enhance clinical management, and develop more effective 
therapies.Authors are encouraged to have their contribution checked for grammar. Abbreviations are allowed 
but should be spelt out in full when first used. Integers ten and below are to be spelt out. Italicize foreign 
language phrases (e.g. Latin, French). 

2. Materials and Methods 

2.1.  Data of malaria 

The Gene Expression Omnibus (data obtained from the Gene Expression Omnibus (GEO). GEO) is a 
public functional genomics data repository (https://www.ncbi.nlm.nih.gov/geo/) by GEO accession GSE192757. 
The dataset is about Immunization via mosquito bite with radiation-attenuated Plasmodium falciparum 
sporozoites (IMRAS). This study aimed to evaluate the safety, tolerability, and biomarkers of protection of 
healthy malaria-naïve adults. Radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) was used as the 
intervention agent.  Samples will receive mosquito bites from Anopheles stephensi mosquitoes infected with 
Plasmodium falciparum sporozoites (PfRAS) for true immunization, or non-infected for mock immunization. 
This includes whole blood RNA sequencing data and analysis of gene expression responses to identify potential 
biomarkers for individual vaccine responses after PfRAS vaccination. 

2.2.  Methods 

A search of Gene Expression Omnibus (GEO) for a dataset includes the search terms, ‘malaria’ or 
‘Plasmodium falciparum,’ and ‘homo sapiens.’ Data on malaria will be obtained from differentially expressed 
genes (DEGs) and analyzed using bioinformatics methods. The first method used GEO2R 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) to identify the DEGs. Access the GEO2R tool by clicking the text 
“Analyze with GEO2R.” To identify upregulated and downregulated genes, the samples were defined into two 
groups “true immunized” and “mock immunized” by highlighting relevant samples. The samples are highlighted 
in group color.  Genes analyzed using the threshold log2(FC)>1 and p <0.05 were statistically significant. 
Volcano plots display the statistical significance of the difference relative to the magnitude of the difference for 
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each gene in the comparison, usually through the negative base-10 log and base-2 log fold-change, respectively 
[McDarmaid (2019)] 

Search tools for the retrieval of interacting genes using the STRING database (https://string-db.org/) 
(version 12.0), which integrates known and predicted PPIs, can be used to predict functional protein 
interactions. The STRING database aims to collect, score, and integrate all publicly available sources of 
protein–protein interaction information and to complement these with computational predictions [Szklarczyk et 
al. (2019)]. The significance genes were analyzed in multiple proteins and co-expression as well as species 
limited to “homo sapiens” and a protein-protein interaction (PPI) score by using the required score of medium 
confidence (0.4).  

Cytoscape software, version 3.10.1, was used to visualize the PPI network. Hub genes were screened using 
Cytoscape according to their centrality. All PPI networks were analyzed using Cytoscape 
(https://cytoscape.org/). Cytoscape is an app specially designed to calculate centrality indices used to identify 
the most important nodes in a network [Scardoni (2015)]. CytoNCA provides multiple centrality calculations  
for both weighted and unweighted networks, various forms of visualization analysis, and quantitatively 
evaluates the computation results [Tang (2015)]. Centrality provides an estimate of the importance of a node or 
edge to the connectivity or information flow of a network. The eight centrality measures in CytoNCA were: 
Betweenness centrality, closeness centrality, degree centrality, eigenvector centrality, Local Average 
Connectivity-based Centrality, Network Centrality, Subgraph Centrality, and Information Centrality [Tang 
(2015)]. The choice of centrality measurement depends on the type of genes considered important in the 
pathway [Gu et al. (2012)]. This study utilized four of them to identify important proteins, including 
Betweenness Centrality, Closeness Centrality, Degree, and EigenVector. Overall centrality was carried out as an 
optimal linear combination of the four measurements. Suppose S is the covariance matrix of a protein data 
matrix with dimensions , where N is the number of protein data points and 4 represents the centrality 
values utilized in this study. Let  be the eigenvector of S, obtained from the highest 
eigenvalue. The equation for determining the overall centrality value can be computed as follows: 

      (1) 
The results of the hub genes were analyzed using Overall Centrality by Rstudio and short from the largest result 
of Overall Centrality. 

Enrichment analysis is more effective for pathways in which multiple genes have strong biological signals 
[Raimand (2019)]. Biological pathways are sets of the top 10 genes from the three bioinformatics methods that 
were subjected to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes 
pathway analysis using Enrichr (https://maayanlab.cloud/Enrichr/). Enrichr is a popular gene set enrichment 
analysis web server search engine that contains hundreds of thousands of annotated gene sets [Evangelista 
(2023)]. Gene Ontology considers three main aspects for explaining protein functions, including molecular 
function, cellular component, and biological process. 

 
Fig. 1. Diagrammatic representation of the research. 

3. Result and Discussion 

3.1.  Differentially expressed genes 

The search identified GEO datasets and the selected dataset is GEO accession ‘GSE192757’. The overall 
design of this data was a comparison of RNA-seq results from two cohorts, each with two treatments, ‘true-
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immunization’ and ‘mock-immunization.’ Mosquitoes designated for ‘mock-immunization’ were raised, 
handled, and irradiated in the same manner as those for ‘true-immunization’. The only difference was that they 
were fed blood cultures not infected with Plasmodium falciparum [Hickey et al. (2020)]. Differentially 
expressed gene (DEG) tools perform statistical tests based on quantifying expressed genes derived from the 
computational analyses of raw RNA-seq reads to determine which genes have a statistically significant 
difference [McDarmaid et al. (2018)].  GEO2R was used to compare the two groups of samples to identify 
genes that were differentially expressed across experimental conditions. software 
(https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html).  The resulting data from DEGs using GEO2R produced 
169 RNA-seq, which will be further analyzed to predict significant target proteins. 

.  

Fig. 2. Volcano plot of the differentially expressed genes between true immunized vs mock immunized 

The dataset contains 117 upregulated DEGs (red) and 52 downregulated DEGs (blue). A volcano plot 
displaying statistical significance (-log10 P-value) versus magnitude of change (log2 fold change) was used to 
visualize the differentially expressed genes, and the highlighted genes were significantly differentially expressed 
at a default adjusted p-value cut-off of 0.05. 

3.2.  Protein-protein interaction network and visualization of genes 

 
Fig. 3. Protein-protein interaction network in STRING database 

 

This score is scaled between zero and one and provides an estimate of STRING’s confidence in whether a 
proposed association is biologically meaningful, given all the contributing evidence [Szklarczyk et al. (2021)]. 
The resulting page shows the protein-protein interaction network for the protein of interest, with nodes 
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representing proteins and edges representing interactions between them. The scores are based on different types 
of evidence, including gene neighborhood, gene fusion, gene co-occurrence, gene co-expression, 
experiments/biochemistry, annotated pathways, and text mining [Szklarczyk et al. (2023)]. Several genes have 
duplicate proteins that are not detected in Homo sapiens; therefore, these protein targets are deleted, resulting in 
110 unique proteins. 

3.3.  CytoNCA in Cytoscpae 

Cytoscape can be used to perform network analysis and visualization, including the analysis of 
differentially expressed genes. From the STRING Database, Cytoscape allows users to map the attributes of the 
nodes and edges to properties such as color and edge width. Centrality measures can be calculated using R and 
the top genes from the overall centrality. There were 52 protein nodes with 135 interaction edges identified. The 
next step will involve centrality analysis to identify essential protein PPI networks [Tang et al. (2015)].  

 
Fig. 4.  Protein-protein interaction network in cytoscape. 

Cytoscape showed protein-protein interactions (Figure 4). Nodes are colored in blue and edges are sized 
based on the number of genes shared by connected pathways. This study utilized four centrality measures from 
CytoNCA to identify proteins. 

3.4.  Overall centrality with PCA 

The overall centrality was obtained through an optimal linear combination derived from eigenvectors with the 
highest eigenvalue based on PCA results [Gan and Djauhari (2012)]. Overall centrality offers a more 
comprehensive understanding of a node's importance within a network, considering both direct connections and 
the potential to act as a bridge between other nodes. Although degree centrality and betweenness centrality are 
valuable measures in network analysis, overall centrality provides a more holistic view of a node's importance 
by considering multiple factors. Optimality criteria were applied using PCA on a 52×4 data matrix representing 
52 proteins and their standardized scores across the four measurements (Table 1).  
 

Protein BC CC DC EC OC 
MMP9 5.1816  0.7118 2.4358 1.3557 15.8327 
LCN2 1.7998 0.6647 2.2456 2.0945 6.6780 
LTF 1.5369 0.6705 2.6259 2.2787 6.2203 
SPP1 1.5867 0.6647 1.1045 0.5379 5.3883 
COL6A1 1.7852 0.5522 -0.0366 -0.4516 5.1191 
MMP8 0.8975 0.6531 2.2456 2.1321 4.2666 
SDC1 1.2578 0.5576 0.1536 -0.3569 3.8376 
TEK 0.8935 0.5199 -0.0366 -0.4666 2.7210 
COL17A1 0.8755 0.3671 -0.6071 -0.7851 2.2073 
CEACAM8 0.1685 0.6301 1.4849 1.5944 1.8306 
ORM1 0.2348 0.5796 0.1536 0.0847 1.1310 
CEACAM6 0.1949 0.5145 0.3438 0.5687 1.1007 
CHI3L1 0.0033 0.6019 0.3438 0.3313 0.6505 
RETN -0.2384 0.6188 1.2947 1.5807 0.6201 
CAMP -0.2844 0.6188 1.2947 1.6765 0.4981 
PROK2 0.1949 0.4987 -0.6071 -0.6230 0.4884 
ANXA3 0.1949 0.4570 -0.6071 -0.5573 0.4594 

Table 1.  Centrality measures. 
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Table 1 (Continued) 
 

Protein BC CC DC EC OC 
DEFA4 -0.3312 0.5468 1.4849 1.6830 0.4412 
NECTIN2 0.1949 0.3622 -0.6071 -0.7763 0.3911 
TP63 0.1949 0.1926 -0.6071 -0.8152 0.2711 
BPI -0.4857 0.5306 1.1045 1.5124 -0.2202 
DEFA1B -0.4879 0.5252 0.9143 1.3016 -0.3498 
DEFA1 -0.5027 0.5252 0.9143 1.3808 -0.3888 
S100A8 -0.3885 0.5907 0.3438 0.6266 -0.3991 
CRISP3 -0.4267 0.5199 0.5340 0.7903 -0.4311 
DEFA3 -0.5215 0.4934 0.3438 0.7505 -0.8213 
PPBP -0.5089 0.5145 -0.2268 -0.2947 -1.1357 
CHIT1 -0.5215 0.5468 -0.4169 -0.1365 -1.2641 
ABCA13 -0.5047 0.4725 -0.4169 -0.3103 -1.2729 
ANGPT1 -0.5215 0.5092 -0.4169 -0.4718 -1.2927 
FOLR3 -0.5215 0.4519 -0.4169 -0.1200 -1.3309 
OLR1 -0.5215 0.5306 -0.6071 -0.4.101 -1.3959 
CSPG4 -0.5215 0.3720 -0.6071 -0.7438 -1.5100 
BTNL3 -0.5215 0.4519 -0.7973 -0.5432 -1.5710 
KLK1 -0.5215 0.3720 -0.7973 -0.7380 -1.6287 
EFNA5 -0.5215 0.3192 -0.7973 -0.7869 -1.6662 
ENAH -0.5215 0.3192 -0.7973 -0.7869 -1.6662 
TACSTD2 -0.5215 0.3145 -0.7973 -0.6945 -1.6689 
CMTM2 -0.5215 0.3005 -0.7973 -0.8010 -1.6795 
CLEC4D -0.5215 0.2637 -0.7973 -0.7951 -1.7055 
KIR3DL1 -0.5215 0.1797 -0.7973 -0.8144 -1.7649 
TCL1A -0.5215 0.0285 -0.7973 -0.8180 -1.8716 
ANXA8 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
ANXA8L1 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
BEX1 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
CERS3 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
GDF7 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
GREM2 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
MTRNR2L12 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
MTRNR2L8 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
NIPAL4 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 
TCEAL2 -0.5215 -2.0114 -0.7973 -0.8183 -3.3118 

 
The key elements of the initial eigenvector  were , , , and . The 
values represent the relative significance of each centrality metric. We plugged in these values into the equation 
for calculating the overall centrality, which can be expressed as follows:   

    
 In this case, degree centrality is the most crucial measurement of covariance structure among these 

measurements. This is followed by eigenvector centrality, betweenness centrality, and closeness centrality in 
that order. The top ten proteins with the highest overall centrality values, namely MMP9, LCN2, LTF, SPP1, 
COL6A1, MMP8, SDC1, TEK, CEACAM8, and COL17A1, were further analyzed using enrichment analysis. 

The search identified GEO datasets and the selected dataset is GEO accession ‘GSE192757’. The overall 
design of this data was a comparison of RNA-seq results from two cohorts, each with two treatments, ‘true-
immunization’ and ‘mock-immunization.’ Mosquitoes designated for ‘mock-immunization’ were raised, 
handled, and irradiated in the same manner as those for ‘true-immunization’. The only difference was that they 
were fed blood cultures not infected with Plasmodium falciparum [Hickey et al. (2020)]. Differentially 
expressed gene (DEG) tools perform statistical tests based on quantifying expressed genes derived from the 
computational analyses of raw RNA-seq reads to determine which genes have a statistically significant 
difference [McDarmaid et al. (2018)].  GEO2R was used to compare the two groups of samples to identify 
genes that were differentially expressed across experimental conditions. software 
(https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html).  The resulting data from DEGs using GEO2R produced 
169 RNA-seq, which will be further analyzed to predict significant target proteins. 

3.5.  Gene Ontology and KEGG Pathway 

As shown in Figure 5 (a), the results of gene ontology analysis were visualized using bar plots and 
displayed the top 10 enrichment terms for each aspect of gene ontology. In the context of GO Biological Process 
terms, based on the results of previous studies, there is no direct evidence of a correlation between the listed 
biological process terms and malaria. The search results encompass studies on gene expression profiling in 
peripheral malaria infection, the inner membrane complex at various stages of the malaria parasite, the cellular 
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and molecular basis for malaria parasite invasion of human red blood cells, the genome sequence of the human 
malaria parasite Plasmodium falciparum, and vector biology, ecology, and control of malaria. While some of 
these studies mentioned cellular differentiation, extracellular matrix organization, and inflammatory responses, 
none of them specifically mentioned the listed biological process terms in relation to malaria. Therefore, further 
research is needed to determine whether there is a correlation between these biological process terms and 
malaria. 

In the context of Gene Ontology Molecular Function terms, Pena and Plampona (2022) discussed heme 
oxygenase-1, carbon monoxide, and malaria and highlighted the involvement of different transition metals, 
including iron, in heme metabolism and the pathogenesis of malaria. This implies that the binding of transition 
metal ions may be significant in the investigation of malaria.  

In the context of GO Cellular Component terms, based on the search results, there was no direct evidence 
of a correlation between the listed cellular component terms and malaria. The search results include studies on 
the inner membrane complex in the multiple stages of the malaria parasite, the cellular and molecular basis for 
malaria parasite invasion of human red blood cells, and the substrate-binding site of an iron-detoxifying 
membrane transporter from Plasmodium falciparum. While some of these studies mentioned cellular structures 
and compartments, none of them specifically mentioned the listed cellular component terms in relation to 
malaria. Therefore, further research is needed to determine whether there is a correlation between these cellular 
component terms and malaria. 

a  
b 

 
c 

Fig. 5.  Gene ontology (a) biological process, (b) molecular function, (c) cellular component. 

As shown in Figure 6, the KEGG Pathway was sorted by the p-value. The results of KEGG pathway 
analysis can be further expanded to reveal gene sets related to malaria. This suggests that SDC1 can potentially 
serve as a biomarker for malaria. SDC1 is a genetic code responsible for syndecan-1, a proteoglycan with 
heparan sulfate that spans cell membranes and participates in processes such as cell adhesion, migration, and 
signaling [Agerbæk et al. (2019)]. While there is no direct proof of SDC1's involvement in malaria, some search 
findings hint at its potential role in the interaction between Plasmodium falciparum malaria parasites and host 
cells. 

One study found that the seclusion of Plasmodium falciparum malarial parasites in the placenta is 
facilitated by the connection between VAR2CSA and chondroitin sulfate A on syndecan-1  (Ayres Pereira et al., 
2016). This study suggests that SDC1 is modified by a unique chondroitin sulfate in the placenta, but not in 
other organs. Another study found that a glycosaminoglycan binding malaria protein, pl-CS, interacts with 
several proteins, including syndecan 1 (SDC1), in human melanoma cells [Salanti et al., 2015]. This research 
indicates that pl-CS may serve as a potential indicator of melanoma progression. However, it is important to 
note that these computational findings still require further support from additional biological research to validate 
these findings. 
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Fig. 6.  KEGG Pathway. 

4. Conclusion 

The enrichment analysis results for the top 10 proteins, including MMP9, LCN2, LTF, SPP1, COL6A1, 
MMP8, SDC1, TEK, COL17A1, and CEACAM8, suggested a possible connection to malaria. Notably, SDC1 
was the most significantly associated protein with the disease. This implies that SDC1 has the potential to be 
considered a candidate biomarker for malaria. These findings highlight a potential link between these proteins 
and malarial pathology. 
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