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Abstract 

Land Surface Temperature (LST) is a key parameter for climate and environmental studies, typically 
derived from satellite thermal infrared observations. Accurate estimation of LST requires correction for 
atmospheric absorption and surface emissivity. This study compares the Split-Window Algorithm (SWA) 
and the Enterprise Algorithm (EA) for LST retrieval from the Visible Infrared Imaging Radiometer Suite 
(VIIRS) onboard the National Oceanic and Atmospheric Administration (NOAA)-20 satellite. Algorithm 
coefficients were derived from 135,000 synthetic cases generated with the MODTRAN 4.0 radiative transfer 
model, using Thermodynamic Initial Guess Retrieval (TIGR-2) atmospheric profiles and emissivity spectra 
from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) library. Sensitivity 
analyses assessed the impact of sensor noise, emissivity uncertainty, and atmospheric water vapor. Results 
indicate that emissivity uncertainty dominates retrieval errors, with SWA achieving 1.25–1.64 K and EA 
1.80–2.29 K. Validation at the Walpeup and Hay sites in Australia confirmed both methods perform 
consistently, with SWA slightly more robust under variable conditions. 

Keywords: Land Surface Temperature; VIIRS; NOAA-20; Split-Window Algorithm; Enterprise 
Algorithm.  

1. Introduction 

Land Surface Temperature (LST) is a fundamental parameter in land–atmosphere interactions, reflecting the 
exchange of energy and heat fluxes between the Earth’s surface and the atmosphere [1], [2]. It plays a critical role 
in a wide range of applications, including evapotranspiration estimation [3], soil moisture monitoring [4], and 
climatic, hydrological, and ecological studies [5]–[7]. Because of its importance, LST has been routinely derived 
from thermal infrared (TIR) satellite observations for decades, providing valuable information for global 
environmental and climate research. 

Despite its significance, retrieving accurate LST from satellite measurements remains challenging due to the 
influence of atmospheric absorption and emission, particularly from water vapor, as well as variations in land 
surface emissivity [8], [9]. These factors introduce uncertainties that must be corrected to achieve reliable LST 
estimates. Over the years, several retrieval algorithms have been developed to address these issues [10]–[17]. 
Among these, the split-window (SW) technique has been the most widely adopted, as it effectively reduces 
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atmospheric distortions by exploiting the difference in brightness temperatures between two adjacent TIR 
channels. In parallel, the Enterprise Algorithm (EA) has been operationally implemented to provide consistent 
LST products for NOAA and JPSS missions. 

This study evaluates the performance of SWA and EA for LST retrieval from the VIIRS instrument onboard 
NOAA-20. Using simulations based on MODTRAN 4.0 combined with TIGR atmospheric profiles, along with 
ground-based validation from two sites in Australia, we aim to quantify algorithm accuracy, assess sensitivity to 
key uncertainties, and provide insights into their suitability for operational LST estimation. 

2. Materials and methods 

2.1.  Theoretical basis 

The retrieval of Land Surface Temperature (LST) from thermal infrared (TIR) satellite measurements is 
fundamentally based on the Radiative Transfer Equation (RTE). This equation models the total radiance measured 
at the satellite sensor as the sum of surface emission, the upwelling atmospheric radiance, and the downwelling 
atmospheric radiance reflected by the Earth’s surface and attenuated during transmission through the atmosphere. 
Under clear sky and local thermodynamic equilibrium conditions, the top of atmosphere radiance measured by a 
space-borne sensor in a given TIR channel i, at a view zenith angle θ can be written as:  
 

                                    L ୱୣ୬ୱ୭୰,୧ሺθሻ ൌ ൫ε୧B୧ሺTୱሻ ൅ ሺ1 െ ε୧ሻ L ୧
↓ ൯τ୧ሺθሻ ൅ L ୧

↑ ሺθሻ                         (1) 

 
where L ୱୣ୬ୱ୭୰,୧ሺθሻ represents the radiance measured at the sensor in channel i and at a view zenith angle θ. The 
term ε୧ is the surface emissivity for channel i, Tୱ is the land surface temperature, B୧ሺTୱሻ denotes the surface 
radiance calculated using Planck’s function, τ୧ሺθሻ is the effective atmospheric transmittance at angle θ, L୧

↓ and 
L ୧

↑ ሺθሻ represent the atmospheric downward and upward radiances, respectively.  
According to Planck’s law, B୧ሺTୱሻ is defined as:  
 

                                                          𝐵௜ሺ𝑇௦ሻ ൌ  
௖భఒ೔

షఱ

ୣ୶୮൬
೎మ

ഊ೔೅൰ିଵ
                                                                    (2) 

where c1= 1.19104 × 108 Wµm4sr-1m-2 and c2= 1.43877 × 108 µm K  are physical constants, and 𝜆𝑖 is the effective 
wavelength for channel i, computed as a weighted average of monochromatic wavelengths values using the 
channel’s spectral response function (SRF) 𝑓i(λ), as follows:  
 

                                                         𝜆௜ ൌ  
׬ ௙೔ ሺ஛ሻ஛ୢ஛ 

ഊమ,೔
ഊభ,೔

׬ ௙೔ ሺ஛ሻୢ஛ 
ഊమ,೔

ഊభ,೔

                                                                (3) 

 
where λ1,i and λ2,i denote the lower and upper wavelength limits of channel i, respectively. 

To retrieve LST from Eq. (1), it is crucial to account for and minimize the effects of atmospheric parameters 
(e.g., downwelling and upwelling radiance, transmittance) and surface emissivity. Several approaches have been 
developed for this purpose, each relying on different assumptions. Among them, the SWA and the EA are two 
widely used methods for estimating LST from VIIRS onboard the NOAA-20 satellite, both designed to reduce 
atmospheric and emissivity influences and ensure accurate LST retrieval. 
 

2.2.  VIIRS characteristics 

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a whiskbroom scanning radiometer carried aboard the 
Suomi National Polar-orbiting Partnership (S-NPP), NOAA-20, NOAA-21, and future Joint Polar Satellite 
System (JPSS) series-satellites. It is designed to provide global observations of the land, ocean, atmosphere, and 
cryosphere by collecting visible and infrared imagery as well as radiometric measurements of surface and cloud 
properties [18], [19]. VIIRS features 22 spectral bands spanning wavelengths from approximately 0.41 to 12.5 
µm, comprising five high-resolution imaging bands (I-bands) and sixteen moderate-resolution bands (M-bands), 
in addition to a panchromatic Day/Night Band (DNB) for low-light imaging. For LST retrieval, VIIRS primarily 
uses its two thermal infrared split-window channels: M15 and M16. The M-bands employed for LST retrieval 
from NOAA-20 are summarized in Table 1. 
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Table 1.  The characteristics of VIIRS NOAA-20 M15 and M16 bands. 

 
The spectral response function (SRF) of the two VIIRS TIR bands are shown in Fig. 1. 
 

 
 
 
 
 
 

 
 
 
 
 
 
           
 
 
 

 
Fig. 1.  Spectral response functions of VIIRS NOAA-20 bands M15 and M16. 

 

2.3.  Split Window Algorithm 

The Split-Window Algorithm (SWA) is one of the most widely used techniques for retrieving LST from satellite 
data. It requires sensors equipped with at least two TIR bands, typically centered around 11 µm and 12 µm. 
Originally introduced by McMillin [20] for sea surface temperature retrieval, the method was later adapted for 
LST estimation from a variety of sensors [21]–[24]. The principle of the SWA relies on the differential absorption 
between two adjacent TIR channels, which allows partial correction of atmospheric effects, particularly those 
caused by water vapor. 

Over the years, several modifications and parameterizations have been proposed to improve its accuracy, each 
adapted to specific atmospheric conditions or sensor characteristics. Li et al. [9] provided a comprehensive 
overview of these approaches, highlighting their theoretical basis and assumptions.  

In this study, we employ the SWA developed by Sobrino and Raissouni [15], which incorporates corrections 
for emissivity and atmospheric water vapor, and is formulated as follows:  

 

                   Tୱ ൌ  T୧ ൅ cଵ൫T୧ െ T୨൯ ൅ cଶ൫T୧ െ T୨൯
ଶ

൅ c଴ ൅ ሺcଷ ൅ cସWሻሺ1 െ εሻ ൅ ሺcହ ൅ c଺Wሻ∆ε                  (4) 

 

where Ts is the land surface temperature (in K), Ti and Tj are the at-sensor brightness temperatures from the 

VIIRS M15 and M16 bands (in K), ε=(εi+εj) /2 and Δε=(εi−εj) are the mean effective emissivity and the emissivity 

difference between the two bands, respectively; w is the total atmospheric water vapor content (g/cm2); and c0 to 

c6 are regression coefficients derived from simulated data. 

2.4.  Enterprise Algorithm 

The Enterprise Algorithm (EA) is the operational approach adopted for generating LST from VIIRS data. It is 
designed to provide a consistent and computationally efficient framework for global LST retrievals within the 
NOAA processing system. The EA applies a linear regression model that relates top-of-atmosphere brightness 
temperatures from the VIIRS split-window channels to surface temperature, while incorporating emissivity and 
emissivity-difference terms to account for land surface radiative properties. According to the Theoretical Basis 
Document (TBD) for VIIRS LST production, the EA is expressed as [25], [26]: 

VIIRS bands Wavelength (µm) Bandwidth (µm) Spatial Resolution (m) 

M15 10.763 10.26–11.26  
750 

M16 12.013 11.54–12.49 
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                                           Tୱ ൌ   c଴൅ cଵT୧ ൅ cଶ൫T୧ െ T୨൯ ൅ cଷε ൅ cସε൫T୧ െ T୨൯ ൅ cହ∆ε                                (5) 

 

where Ts is the land surface temperature (in K), Ti and Tj are the at-sensor brightness temperatures from the 

VIIRS M15 and M16 bands (in K), ε and Δε are the mean effective emissivity and the emissivity difference 

between the two bands, respectively, as defined previously; and c0 to c5 are regression coefficients derived from 

simulated data, consistent with the SWA formulation. 

2.5.  Simulation and regression process 

The coefficients for the SWA and the EA were derived from simulated data generated using the MODerate 
spectral resolution atmospheric TRANsmission (MODTRAN 4.0) radiative code. This approach models the 
relationship between input LST and the resulting top-of-atmosphere (TOA) brightness temperatures, after which 
regression analysis is performed to obtain the coefficients required for LST retrieval. 

Following previous studies [27], [28], we used MODTRAN 4.0 [29] with the VIIRS spectral response 
functions for bands M15 and M16 to simulate the key atmospheric parameters: transmittance (τi), downwelling 
radiance (L ୧

↓ ), and upwelling radiance (L ୧
↑ ). The simulations were conducted for 54 representative atmospheric 

profiles extracted from the Thermodynamic Initial Guess Retrieval (TIGR) radiosonde database [30], which 
contains 2311 global atmospheric profiles spanning a wide range of meteorological conditions with total column 
water vapor content (WVC) between 0.06 and 8 g/cm². To ensure cloud-free conditions, profiles with relative 
humidity exceeding 90% in any atmospheric layer were excluded, following Hu et al. [31]. This filtering yielded 
1393 clear-sky profiles, from which 54 representative cases were selected. These cover WVC values from 0.15 to 
4.65 g/cm² and surface air temperatures (T₀, bottom-layer temperature) between 230 K and 330 K. 

To simulate realistic LST variability, five surface temperature levels were defined relative to T₀: T₀−5, T₀, 
T₀+5, T₀+10, and T₀+20. Sensor viewing geometry was accounted for by including five view zenith angles (VZA): 
0°, 10°, 20°, 30°, and 40°. Surface emissivity was derived from the ASTER Spectral Library [32], which provides 
100 spectra covering various surface types, including rocks, soils, vegetation, water, snow, and ice. The effective 
emissivity (εᵢ) for VIIRS bands was calculated by convolving the spectral emissivity ε(λ) with the VIIRS spectral 
response function f(λ) [33], according to: 

                                                             ε୧ ൌ  
׬ ୤ሺ஛ሻகሺ஛ሻୢ஛ 

ಓమ
ಓభ

׬ ୤ሺ஛ሻୢ஛ 
ಓమ

ಓభ 

                                                                     (6)       

 
Altogether, this experimental design produced 135000 simulated cases (54 profiles × 5 LST levels × 5 VZAs 

× 100 emissivity spectra). MODTRAN outputs were then convolved with the VIIRS M15 and M16 response 
functions to extract transmittance, downwelling radiance, and upwelling radiance, from which at-sensor 
brightness temperatures (Tᵢ) were computed using Eq. (1) and the inverse Planck function. The simulated 
brightness temperatures were finally regressed against the input LSTs to derive the coefficients for both the SWA 
and EA (Eq. (4) and Eq. (5)). Fig. 2 summarizes the methodology for algorithm coefficient development. 

2.6.  Validation sites 

Validation of LST retrieval is essential to ensure that satellite-derived estimates meet accuracy requirements. One 
of the most common approaches is ground-based validation, where remotely sensed LST is compared against in 
situ measurements. In this study, two homogeneous sites in Australia, Walpeup and Hay, were selected for 
validation following the description by Prata [34]. At both sites, solid-state temperature transducers were used to 
provide in situ surface temperature measurements [35]. Further details on the operation and calibration of these 
instruments are given in [35]. 

The geolocation and surface characteristics of the sites are summarized in Table 2. 
 

 

 

Table 2.  Geolocation and surface type of the validation sites. 

 

Site Location (Lat, Lon) Surface Type 

Walpeup, northwest of Melbourne 35°12′S, 142°36′E Cropland 

Hay, NewSouthWales 23°24′S, 145°18′E Vegetation/soil mixture 
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Fig. 2.  Workflow for deriving coefficients of the Split-Window Algorithm (SWA) and Enterprise Algorithm (EA). 

3. Results and discussion 

3.1.  Coefficients of Split-Window and Enterprise algorithms 

Table 3 lists the regression coefficients of the SWA and the EA, derived from MODTRAN 4.0 radiative transfer 
simulations. These coefficients are used for estimating LST from VIIRS NOAA-20 observations. 

 
 

                   

 

                     Table 3. Regression coefficients of the SWA and EA for LST retrieval from VIIRS NOAA-20. 

Method C0 C1 C2 C3 C4 C5 C6 

Split-Window Algorithm -0.16 1.331 0.234 58.10 -0.57 -112.00 8.84 

Enterprise Algorithm 58.22 1.000 2.889 -58.89 0.019 -148.57   — 
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3.2.  Sensitivity analysis of the algorithms 

To evaluate the robustness of the developed SWA and the EA, a sensitivity analysis was carried out to 
quantify the influence of major uncertainty sources on the retrieved LST. According to Wan and Dozier [22], 
three primary error sources were considered: (i) sensor noise (NEΔT), (ii) land surface emissivity (LSE), and 
(iii) atmospheric water vapor content (WVC). 

The total error (δTotal) in LST can be expressed as: 

                                                 𝛿்௢௧௔௟ሺ𝑇ௌሻ ൌ ට𝛿௔௟௚
ଶ ൅ 𝛿ோ∆்

ଶ ൅ 𝛿ఌ
ଶ ൅ 𝛿ௐ

ଶ                                             (7) 

where alg is the standard deviation associated with the algorithm, and NE∆T, ε and  W are the contribution to 
the total error arising from sensor noise, emissivity and atmospheric water vapor, respectively, These terms are 
estimated as follows: 

                                                δ୒୉∆୘ ൌ ටቀ
ப୘౏

ப୘భఱ
ቁ

ଶ
eଶሺTଵହሻ ൅ ቀ

ப୘౏

ப୘భల
ቁ

ଶ
eଶሺTଵ଺ሻ                                     (8) 

 

                                                 δε ൌ ටቀ
ப୘౏

பக
ቁ

ଶ
eଶሺεሻ ൅ ቀ

ப୘౏

ப∆க
ቁ

ଶ
eଶሺ∆εሻ                                                  (9) 

 
                                                 δ୛ ൌ ቀ

ப୘౏

ப୛
ቁ eሺWሻ                                                                               (10) 

 
where, e(T15) and e(T16) denote the radiometric noise (NEΔT) for the VIIRS channels M15 and M16, with values 
of 0.070 K and 0.072 K, respectively, as reported in the VIIRS LST Algorithm Theoretical Basis Document [25]. 
The terms e(ε15) and e(ε16) denote the emissivity uncertainties, commonly assumed to be 0.01 in most LST 
estimation studies [36]. To further assess the impact of emissivity uncertainty on LST retrieval, two levels were 
considered: 0.01 and 0.005 (i.e., e(ε15) = e(ε16) = 0.01 and e(ε15) = e(ε16) = 0.005). Finally, e(w) denotes the 
WVC uncertainty, set to 0.5 g/cm² following [37]. 

For the SWA, all four error components (δalg, δNEΔT, δε, δW) contribute to the total uncertainty. In contrast, 
the EA formulation (Equation 5) does not explicitly include WVC. As a result, the WVC error term is excluded, 
and only δalg, δNEΔT, and δε are considered in the total LST error. 

Table 4 summarizes the sensitivity analysis results for both algorithms. For each error source, the contribution 
to LST uncertainty is reported, along with the total propagated error under the two emissivity uncertainty 
scenarios. 
 

 

 

 

 

 

Table 4.  Error contributions for the Split-Window Algorithm (SWA) and Enterprise Algorithm (EA) in LST retrieval. 

 
The sensitivity analysis results (Table 4) highlights clear differences between the two algorithms. For both 

SWA and EA, emissivity uncertainty (δε) is the dominant error source, particularly at the higher uncertainty level 
of 0.01, where it contributes over 1 K to the total LST error. When reduced to 0.005, this contribution is nearly 
halved, highlighting the critical role of accurate emissivity characterization in LST retrieval. Algorithmic 
uncertainty (δalg) also plays a major role, with a larger effect in the EA (1.60 K) compared to the SWA (1.07 K), 
which explains the consistently higher total error of the EA. Sensor noise (δNEΔT) introduces smaller errors, 
although its effect is more pronounced for EA (0.49 K) than for SWA (0.20 K). For SWA, the additional WVC 
uncertainty contributes minimally (0.02 K), confirming that WVC errors are not a major limiting factor in this 
context. 

Overall, the total LST (δTotal) error ranges between 1.25–1.64 K for SWA and 1.80–2.29 K for EA. This 
indicates that the SWA achieves slightly more robust LST retrieval under varying uncertainty conditions, while 
the EA is more sensitive to algorithmic and sensor noise errors. These results emphasize that while both algorithms 
perform reasonably well, improvements in emissivity characterization and algorithm calibration are essential to 

Error 
source (K) 

δalg δNEΔT δε  (0.01) δε 
(0.005) 

δW δTotal 
(0.01) 

δTotal 
(0.005) 

SWA 1.07 0.20 1.23 0.62 0.02 1.64 1.25 

EA 1.60 0.49 1.56 0.67 – 2.29 1.80 
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further reduce LST retrieval uncertainty. Moreover, the dominance of emissivity as the primary source of error, 
contrasted with the negligible role of WVC when its uncertainty is constrained, aligns with the results of Chen et 
al. [38] and Sobrino et al. [39]. This further underscores the importance of precise emissivity characterization in 
enhancing LST accuracy. 

3.3.  Validation of the algorithms 

The accuracy of the retrieved LST from VIIRS NOAA-20 was evaluated by validating the SWA and EA results 
against in-situ observations at the Walpeup and Hay sites, using the ground truth datasets described in Section 2. 
Table 5 presents the statistical metrics, including mean bias, standard deviation, and RMSE, which provide a 
quantitative assessment of the performance and reliability of each algorithm in reproducing ground-based LST 
measurements. 

 

 

 

 

 

 

Table 5. Validation statistics of LST retrieved from VIIRS NOAA-20 using SWA and EA against ground measurements at Walpeup and 

Hay sites. 

 

Table 5 summarizes the validation results of the retrieved LST from NOAA-20 VIIRS using the SWA and 
EA against in-situ measurements at the Hay and Walpeup sites. Both algorithms demonstrate satisfactory 
performance, with biases ranging between 1.07 K and 1.64 K, indicating reasonable agreement with ground 
observations. 

At Walpeup, the SWA achieved a bias of 1.28 K and RMSE of 1.88 K, while the EA yielded a slightly lower 
bias of 1.14 K and a comparable RMSE of 1.84 K. This suggests that both algorithms perform similarly, with EA 
reducing systematic error and SWA providing marginally better consistency (standard deviation of 1.38 K vs. 
1.84 K). At Hay, the SWA demonstrated superior performance relative to EA, achieving lower bias (1.07 K vs. 
1.64 K), lower standard deviation (1.24 K vs. 1.57 K), and a slightly higher RMSE (1.64 K vs. 1.57 K). Despite 
the small difference in RMSE, the overall stability and accuracy of SWA at this site indicate its advantage under 
local conditions. 

These findings highlight that algorithm performance may vary depending on site-specific characteristics, such 
as land surface properties and atmospheric variability. In general, both SWA and EA are reliable for LST retrieval, 
with SWA showing a relative advantage at Hay and EA performing marginally better at Walpeup. 

 

4. Conclusion 

This study presents a systematic comparison of the SWA and the EA for retrieving LST from VIIRS onboard 
NOAA-20. Through extensive MODTRAN simulations and validation against in-situ measurements at Walpeup 
and Hay, both algorithms demonstrated reliable performance, with biases typically below 1.6 K and RMSE values 
under 2 K. Sensitivity analysis revealed that emissivity uncertainty is the primary contributor to retrieval errors, 
while atmospheric water vapor has a minor effect when constrained. The SWA showed slightly higher robustness 
and lower total uncertainty, highlighting its advantage for operational LST retrieval under varying surface and 
atmospheric conditions. Overall, these findings confirm that SWA provides a dependable alternative to EA for 
accurate LST estimation from NOAA-20 data, with potential benefits for climate studies, environmental 
monitoring, and hydrological applications. 
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