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Abstract 

Signed integers are normally represented using 2’s complement representation. Addition and subtraction of 
signed numbers is done in the same manner as for unsigned numbers. However carry (or borrow) is simple 
ignored. Unlike unsigned number carry (or borrow) does not mean overflow or error. Doubling of a signed 
number can be done by shift left. However, halving of a signed number can not be done by shift right. Hence 
special arithmetic instruction SAR (Shift arithmetic right) is needed.  
 
We have defined an alternative representation for signed numbers. Here a positive number is represented by 
appended a zero (0) at right. Here a negative number is represented by inverting all bits in corresponding 
positive number. Two signed numbers are added by adding corresponding binary representation. After that carry 
is added to the result. Similarly two signed numbers are subtracted by subtracting corresponding binary 
representation. After that borrow is subtracted. Doubling and halving is done by ROL (Rotate left) and ROR 
(Rotate right) respectively. Following are drawbacks of our system. 

(A) Addition is done in two stages. In the first stage the numbers are added. In the second stage carry is 
added. Carry can not be ignored as in 2’s complement representation. 

(B) Same holds for subtraction. 
(C) When an odd number is halved then error results. In 2’s complement representation approximate 

answer appears. 
The advantage of our system is that entire arithmetic can be carried using ordinary logical instructions. No 
special instruction is needed. In 2’s complement representation a special instruction SAR is needed. This 
instruction is not used for any other purpose. 
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1. Representation 

Following is the method of representation of signed numbers in 2’s complement.  
(D) Find binary representation of corresponding unsigned number. 
(E) A positive number is represented by putting 0 at the beginning. 
(F) A negative number is represented by putting 1 at the beginning. Moreover all bits at the left of right 

most 1 are inverted. 
Following is the method for representation of signed numbers in present scheme. 
(A) Find representation of the corresponding unsigned number. 
(B) A positive number is represented by putting 0 at the end. 
(C) A negative number is represented by putting 1 at the end. All other bits are inverted. In present scheme 

the representation of two numbers of same magnitude and different sign are complement of each other. 
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Unsigned 
Number 

Binary 
Representation 

2’s Complement Scheme Present Scheme 
Positive Negative Positive Negative 

11    1011 +11=01011 -11=10101 +11=10110 -11=01001 
18    10010 +18=010010 -18=101110 +18=100100 -18=011011 
53    110101 +53=0110101 -53=1001011  +53=1101010 -53=0010101 
27    11011 +27=011011 -27=100101 +27=110110 -27=001001 
10    1010 +10=01010 -10=10110 +10=10100 -10=01011 
 
Following method is used for converting a representation into signed number. 

 

2. Addition 
 

The numbers are added in an ordinary manner in both schemes. The only difference is in the method of 
handling carry. 

Numbers 2’s Complement Scheme Present Scheme 
+9 and -14 (A) +9 is  01001 

(B) -14 is 10010 
Addition  11011 
It is -5 because 00101 is +5 

(A) +9 is    10010 
(B) 14 is   00011 
Addition    10101 
10101 is -5 because 01010 is +5

 Carry (if any) is ignored Carry (if any) is added to the result 
-10 and +12           (A) -10 is   10110 

          (B) +12 is  01100 
         Addition    100010 
         Carry is ignored. 
          Hence result is 00010.  it is +2 

(A) 10 is  01011 
(B) +12 is  11000 
 Add        100011 
                          1        Carry addition 

                        00100         It is +2 

 
3. Expansion and Compression 
 
When adding numbers of different sizes, the size of the smaller number (in magnitude) is expanded, so that they 
get the same size. To increase the size of an unsigned number additional 0’s are put in the beginning (LSB). To 

Representation 2’s complement Present scheme 
010100 Left most bit is 0. Hence sign is (+) 

Since positive, hence no change. 
010100 is 20 in absolute value. 
Hence 010100 is +20. 

Right most bit 0. Hence sign is (+) 
Since positive, hence no change 
Drop right most bit.01010. 
01010 is 10 in absolute value. 
Hence 010100 is +10 

101011 Left most bit is 1. Hence sign is (-). 
Since negative, hence complement all bits before 
last one 010101. 
010101 is 21 in absolute value. 
Hence 101011 is -21. 

Right most bit 1. Hence sign is (-) 
Since negative, hence invert all bits 010100 
Drop right most bit 01010. 
01010 is 10 in absolute value 
Hence 010100 is -10 

01111 Left most bit is 0. Hence sign is (+) 
Since positive, hence no change 
01111 is 15 in absolute value 
Hence 01111 is +15 
 

Right most bit 1. Hence sign is (-). 
Since negative, hence invert all bits and 
drop right most bit 1000 
1000 is 8 in absolute value. 
Hence 01111 is -8. 

101100 Left most bit is 1, hence sign is (-) 
Since negative, hence complement invert all bits 
before one 010100. 
10100 is 20 in absolute value. 
Hence 010100 is +20  

Right most bit is 0, Hence sign is (+) 
Since positive, hence no inversion 
Drop right most bit 10110 
10110 is 22 in absolute value. 
Hence 101100 is +22 
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increase the size of a signed number the corresponding method is followed by increasing the size of unsigned 
representation.  
Unsigned 
Number 

Binary 
Representation 

2’s Complement Scheme Present Scheme 
Positive Negative Positive Negative 

12 01100 +12=001100 -12=110100 +12=011000 -12=100111
14 001110 +14=0001110 -14=1110010 +14=0011100 -14=1100011 
20 010100 +20=0010100 -20=1101100 +20=0101000 -20=1010111 
 
In brief the method of size expansion is as follows: 
 

(A) In 2’s complement scheme the size of a number is expanded by putting the copy of the MSB before 
MSB. +12 is 01100. It can be also written as 0001100. Similarly -12 is 10100. It can also be written as 
1110100. 

(B) In present scheme the size of a number is expanded by putting the copy of LSB at MSB. +12 is 11000. 
It can also be written as 0011000. Similarly 12 is 00111. It can also be written as 1100111. 

 
 
Method of addition of the numbers of different sizes can be understood from the table. 
 

Numbers 2’s Complement Scheme Present Scheme 
+20 and +1 +20 is 010100 and +1 is 01. Size of +1 

is increased. 
  +20 is  010100 
  +1 is    000001 
              010101 It is +21 

+20 is 101000 and +1 is 10. Size of +1 is 
increased. 

+20 is  101000 
+1 is    000010 

      Add     101010    It is +21 
+26 and -4 +26 is  011010 

  -4 is   111100    (expand) 
  Add   010110   It is +22 

+26 is  110100 
4 is    110111 (expand) 
add      101011 
                      1      

                  101100   It is +22 
During arithmetic operation it is also possible that the size of result is small. Hence size compression takes 
place. It is done by removing most significant bits. 

(A) In 2’s complement representation if MSB and second most significant bits are same then MSB is 
removed. 

(B) In present scheme if MSB=LSB then this removal can be done. 
-27 and +22 -27  is 100101 

+22 is 010110 
Add    111011 It is -5 
It’s size is compressed as 1011 

27 is      001001 
 +22 is     101100 
 addition  110101 It is 5. 
It’s size is compressed as 0101. 

 
4. Subtraction 
The numbers are subtracted in similar manner 
Numbers 2’s Complement Scheme Present Scheme 
+13 and +4 +13 is 01101 

+4 is   00100   (size expansion) 
     01001  It is +9 

      +13 is  11010 
      +4  is   01000      (size expansion) 
                  10010       It is +9 

 Borrow (if any) is ignored Borrow (if any) is subtracted from the result 
+23 and -5 +23 is  010111 

-5 is     111011 (size expansion) 
         1 011100   It is +28 

+23 is  101110 
5 is    110101 (size expansion) 
            111001 
                      1   Borrow Subtraction 

                  111000   It is +28 
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Overflow 
During addition and subtraction it is possible that the size of the result is more than the size of the bigger 
number (in magnitude). It causes overflow. The solution of this problem is that the size of the bigger number is 
increased by 1 (by putting copy of the MSB in the beginning in 2’s complement scheme and copy of the LSB in 
the beginning in present scheme). 
 
Numbers 2’s Complement Scheme Present Scheme 
+10 and +12 (A) +10 is  01010 

(B) +12 is  01100 
                  10110    
          It is -10 

(A) +10 is  10100 
(B) +12 is  11000 
                  01100 
                          1 

                        01101            It is 9 
+10 and +12 Let us increase the size 

(A) +10 is 001010 
(B) +12 is 001100 
                 010110  It is +22 

Let us increase the size. 
(A) +10 is  010100 
(B) +12 is  011000 

                        101100       It is +22                      
 
5. Multiplication and Division by 2 
 

A signed number in 2’s complement representation can be doubled by SHL (shift left) operation. Here every bit 
is shifted left. The left most bit is removed. Zero (0) is appended to the right. A signed number in 2’s 
complement representation can be halved by SAR (shift arithmetic right) operation. Here every bit is shifted 
right. The right most is removed. Left most bit is retained. The difference between SHR (shift right) and SAR is 
that in SHR the left most bit is made 0. 
      Let us take a word HYDERABAD  

(A) After shift left it will become YDERABAD0. 
(B) After SAR it will become HHYDERABA. 
(C) After SHR it will become 0HYDERABA. 
 

A signed number in present scheme can be doubled by ROL (rotate left) operation. In rotate left operation every 
bit is shifted left and the left most bit (MSB) is transferred to the right (LSB). Similarly it can be halved by ROR 
(rotate right) operation. Here every bit is shifted to the right and the right most bit (MSB) is transferred to the 
left (LSB). 
      Let us take a word HYDERABAD  

(A) After rotate left it will become YDERABADH. 
(B) After rotate right it will become DHYDERABA. 

Since during doubling the size of the number increases hence to avoid overflow the size is increase by 1 in the 
beginning. Similarly after halving a number the size decreases. Hence MSB can be removed. 

 
Unsigned 
Number 

Binary 
Representation 
With expansion 

2’s Complement Scheme Present Scheme 
SHL (Shift left) ROL( Rotate left) 

10 01010 +10=001010 +20=010100 +10=010100 +20=101000 
7 0111 +7=00111 +14=01110 +7=01110 +14=11100 
11 01011 -11=110101 -22=101010 -11=101001 -22=010011 
 

Unsigned 
Number 

Binary 
Representation 

2’s Complement Scheme Present Scheme 
SAR (Shift arithmetic right) ROR (Rotate right) 

10 1010 +10=01010 +5=00101 +10=10100 +5=01010 
20 10100 -20=101100 -10=110110 -20=010111 -10=101011 
7 111 +7=0111 +3=0011 +7=1110 -4=0111 
13 1101 -13=10011 -7=11001 -13=00101 +9=10010 
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In 2’s complement representation halving an odd number produces nearest integer. In present scheme halving of 
an odd number produces error. When +7 is divided by 2 then perfect division can not take place. Hence 
erroneous result comes. A number is odd number if last two bits differ. In this case the result is wrong. 

 
6. Conclusion  
Following table shows the comparison of both methods 

2’s complement Present scheme 
1.  In the representation of a positive number zero (0) 
is appended at the left. 

1. In the representation of a positive number zero (0) 
is appended at the right. 

2. A negative number is represented by inverting only 
those bits, which are to the left of right most 1 in the 
representation of corresponding unsigned number.    

2. A negative number is represented by inverting all 
bits in the representation of corresponding positive 
number. 

3. In the addition of two signed numbers the carry is 
ignored. 

3. In the addition of two signed numbers    carry is 
added to the result. 

4. In the subtraction of two signed number borrow is 
ignored. 

 4. In the subtraction of two signed number borrow is 
subtract from the result. 

5. A number is doubled by shift left (SHL) operation.  5. A number is doubled by ROL (Rotate left) 
operation. 

6. A number is halving by shift arithmetic right (SAR) 
operation.  

6. A number is halving by rotate right (ROR) 
operation. 

7. In halving an odd number lower bound is taken. 7. In halving an odd number error results. 
 

8. In the representation of an odd number left most 
and right most bits differ. 

8. In the representation of an odd number right most 
two bits differ. 

 
     Reference 

 

[1] Ivan Flores, The Logic of Computer Arithmetic, Prentice-Hall (1963) 

[2] Ytha Yu and Charles marut, Assembly language programming and organization of IBM PC, Mc Graw-Hill, 1992 

[3] Peter Norton and John Socha, Peter Norton’s Assembly language book for the IBM PC, Prentice-Hall, 1993.  

[4] John F. Wakerly, Digital Design Principles & Practices, Prentice Hall, 3rd edition 2000, page 47 
[5] Israel Koren, Computer Arithmetic Algorithms, A.K. Peters (2002), ISBN 1-56881-160-8 

[6] David J. Lilja and Sachin S. Sapatnekar, Designing Digital Computer Systems with Verilog, Cambridge University 

Press, 2005 online 

[7] Digital Design and Computer Architecture" by David Harris, David Money Harris, Sarah L. Harris. 2007. Page 18. 

[8] Digital Logic and Computer Design, M. Morris Mano. 
 

J.Vijayasekhar et al./ Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 47




