PRE-IDEALS AND NEW TOPOLOGIES USING FUZZY SETS

M. MARY VICTORIA FLORENCE¹

Research Scholar in Sathyabama University, Sholinganallur, Chennai, Tamil Nadu, Pin 600119, India . Email:florence_regin@yahoo.co.in

Dr.R.Alagar²,

Department of Mathematics, R.V. Government Arts college, Chengalpattu – 603 105 Email:alagar_2k3@yahoo.co.in

Abstract: A fuzzy ideal on a set X is a non empty collection of subsets of X with heredity property which is also closed under arbitrary union and finite intersections. In this paper, we introduce a weak form of fuzzy ideals namely fuzzy pre-ideals and a way to obtain new fuzzy topologies is presented in this paper. Furthermore some interesting results for fuzzy ideals are generalized to fuzzy pre-ideal.

Keywords: compatible ideal 3 . F- Compact, 3 - compact, 3C Fuzzy - Compact.

1.INTRODUCTION

Given a non empty set X, a collection \Im of subsets of X is called a fuzzy ideal

If $A \in \mathcal{S}$ and $B \subseteq A$ implies $B \in \mathcal{S}$ (heredity)

If $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$ (additivity)

If $X \notin \Im$, then \Im is called a proper ideal.

A fuzzy ideal \Im is called a σ -ideal if the following holds

If $\{A_n: n=1,2,\ldots\}$ is a countable sub collection of \mathfrak{I} , then $\cup\{A_n: n=1,2,\ldots\} \in \mathfrak{I}$. The notation (X,τ,\mathfrak{I}) denotes a nonempty set X, a topology τ on X and a fuzzy ideal \mathfrak{I} on X. Given point $x\in X$, $\mathfrak{K}(x)$ denotes the neighborhood system of x i.e. $\mathfrak{K}(x)=\{U\in\tau: x\in U\}$. Given a space (X,τ,\mathfrak{I}) and a subset A of X, we define $A^*(\mathfrak{I},\tau)=\{x\in X:U\cap A\not\in\mathfrak{I}, \text{ for every }U\in\mathfrak{K}(x)\}$

We simply write A^* for $A^*(\mathfrak{I}, \tau)$, when there are only one ideal \mathfrak{I} and only one topology τ under consideration. If we define cl^* on $\mathscr{O}(X)$ as, $cl^*(A) = A \cup A^*$, for all $A \in \mathscr{O}(X)$,then cl^* is a Kuratowski closure operator. The fuzzy topology determined by this closure operator is denoted by $\tau^*(\mathfrak{I})$. \mathfrak{I} (\mathfrak{I} , \mathfrak{I}) a basis for $\tau^*(\mathfrak{I})$. The first unified and extensive study on $\tau^*(\mathfrak{I})$ - topology was done by Jankovic and Hamlett.

Here we introduce a weaker form of ideals, namely fuzzy pre-ideals and a way to obtain new fuzzy topologies from the old fuzzy topologies using pre-ideals..Furthermore some interesting results for fuzzy ideals are generalized to pre-ideals. We shall use cl(A), int(A) to denote closure and interior of a subset A respectively in fuzzy topological space (X, τ) and $cl^*(A)$, $int^*(A)$ will denotes closure and interior of A respectively with respect to τ^* .

In a fuzzy topological space (X, τ) , a subset U is said to be regular- open if int (cl(U)) = U. A subset U in X is regular - closed if cl (int (U)) = U. Clearly U is regular- closed (open) if and only if its complement is regular - open (closed). A subset A of (X, τ) is said to be fuzzy compact if every open cover of A has a finite sub cover. If X is fuzzy compact, then every closed subset of X is also fuzzy compact.

We start with definition of pre-ideals.

Definition 2.1 : A collection P of subsets of X is said to be a fuzzy pre-ideal if

- (i) $\phi \in P$
- $(ii)A,B\!\in\!P\!\!\Rightarrow\!\!A\!\cup\!B\!\in\!P$

Examples2.2:

- (i) Every fuzzy ideal is a fuzzy pre-ideal.
- (ii) If P is the set of all Lebesque measurable sets in R, then P is a fuzzy pre- ideal.(Note that P is not an ideal)
- (iii) If P is the set of all compact subsets of a fuzzy topological space (X,τ) then P is a fuzzy pre-ideal not an ideal.

Let (X,τ,P) be a fuzzy topological space with a fuzzy pre-ideal P on X.

We denote $\beta(\tau, P) = \{V - I : V \in \tau, I \in P\}$

Then $\beta(\tau,P)$ is a basis for a fuzzy topology denoted by $\tau^*(P)$ or τ^* on X.

Clearly this topology τ^* is finer than τ .

Theorem 2.3:

Let P_1 and P_2 are fuzzy pre-ideals in X.

- 1. Then $\tau^*(P_1 \cap P_2, \tau) = \tau^*(P_1, \tau) \cap \tau^*(P_2, \tau)$
- 2. If $P_1 \cup P_2 = \{I \cup J : I \in P_1 \text{ and } J \in P_2\}$ then $P_1 \cup P_2$ is a pre ideal and $\tau^*(P_1, \tau^*(P_2, \tau)) = \tau^*(P_1 \cup P_2, \tau)$.

Proof:

The proof of the theorem is clear.

Theorem 2.4:Let E' denote the derived set of E under τ^* (P, τ), where P is a fuzzy pre -ideal Then $\{x : x \in x \text{ and } x \in G \in \tau \Longrightarrow (G \cap E - \{x\}) \notin P\} \subseteq E'$

Remarks 2.5:

- (i) $\tau_=\tau^*$ if and only if $P\subseteq \text{the }_{collection}$ of all fuzzy closed sets in τ .
- (ii) Let τ_1 and τ_2 be two fuzzy topologies on X such that τ_1 is weaker than τ_2 .

Take P= {collection of all fuzzy closed sets of τ_2 }.

Then
$$\tau_1^*(P) = \tau_2$$

(iii) Let τ_1 and τ_2 be two fuzzy topologies on X .If P is the collection of all fuzzy closed setsin τ_2 , then $\tau_1^*(p)$ is the fuzzy topology generated by $\tau_1 \upsilon \ \tau_2$.

Lemma 2.6:

Let (X,τ) be a fuzzy topological space and P be a fuzzy pre-ideal on X, then $\tau^* = \tau^{**}$

Proof:

Clearly
$$\tau^* \subset \tau^{**}$$

Conversely, let V be a τ^{**} neighbourhood of X.

Then there exists $U \in \tau^*$ and $I_1 \in P$ such that $x \in U - I_1 \subset V$

Since $U \in \tau^*$, there exists $w \in \tau$, $I_2 \in P$ such that $x \in W - I_2 \subset U$ implies

$$x \in W - (I_1 \cup I_2) \subseteq U - I_1 \subseteq V.$$

Hence V is τ^* neighbourhood of X.Thus $\tau^* = \tau^{**}$

Lemma 2.7:

Let (X,τ) be a fuzzy topological space and $\mathfrak I$ be a fuzzy ideal on X, then $\mathfrak I \cap \tau = \{\Phi\}$ if and only if $A^\circ = \Phi$; for all $A \in \mathfrak I$.

The proof of the lemma is clear. But in the case of Pre-fuzzy ideals the above lemma is not true.

Example 2.8:

Let R be the real line with the usual fuzzy topology and let P be the set of all bounded fuzzy closed subsets of R.i.e.all compact fuzzy subsets of R.Let A $[0,1] \in P$ and $A^o \neq \Phi$; but $P \cap \tau = \{\Phi\}$.

Examples for pre fuzzy ideals P for which $A^o = \Phi$; for all $A \in P$

- (i)Let X=R, the real line and τ be the usual fuzzy topology on R. Let P be the collection of all Lebesque measure sets with measure zero.
- (ii)Let (X,τ) be any topological space and \mathfrak{I}_n be the fuzzy ideal of nowhere

dense sets. If P is a fuzzy pre-ideal such that $P \subseteq \mathfrak{I}_n$, then $A^o = \Phi$; for all $A \in P$

Now we generalize a theorem using this.

Theorem 2 0

Suppose $A^o = \Phi$; for all $A \in P$, where P is a fuzzy pre-ideal .Let W be τ^* open set and F be its τ^* - closure, then there is τ -open set G such that $W \subset G \subset cl\ G \subset F$.

cl G denotes the τ - closure of G.

Proof:

As β (P, τ)={V-I:V $\in \tau$,I \in P}is a basis for τ *and let W= \cup {G α -Z α }and X-F = \cup { G β -Z β },where {G α } and {G β } are in τ .And {Z α } and {Z β } are members of P.

For each $\alpha \in \Lambda_1$ and $\beta \in \Lambda_2$ we have $\{G\alpha - Z\alpha\} \cap \{G\beta - Z\beta\} = \Phi$.

Thus $G\alpha \cap G\beta \subset Z\alpha \cup Z\beta$.But $Z\alpha \cup Z\beta \in P$ And $G\alpha \cap G\beta$ is τ open

So $G\alpha \cap G\beta \subset (Z\alpha \cup Z\beta)^0 = \Phi$. Hence $G\alpha \cap G\beta = \Phi$. If $G = \bigcup G_\alpha$, it follows that

 $G\cap (\cup G_{\beta})=\Phi. \text{Hence cl } G\subset X-\cup G_{\beta}\subset F \text{ and Hence } W\subset G\subset \text{cl } G\subset F.$

Under the assumption $A^{\circ} = \Phi$; for all $A \in P$

We have the following corollaries.

Corollary 2.10:

If (X, τ^*) is hausdroff, then (X,τ) is hausdroff.

Proof:

Since (X, τ^*) is hausdroff ,for $x\neq y$, there exists τ open sets V_1 and V_2 and

A, $B \in P$, such that

- (i) $x \in V_1$ -A and $y \in V_2$ -B
- (ii) $(V_1-A) \cap (V_2-B) = \Phi$

From (ii) we have $V_1 \cap V_2 \subset A \cup B$,

So by our assumption $V_1 \cap V_2 = \Phi$;

This implies that (X,τ) is hausdroff.

Corollary 2.11:

Let (X, τ^*) be a fuzzy topological space. Any continuous function mapping (X, τ^*) into regular space is also continuous if recorded as function from (X,τ) into that space.

Proof:

Let $f: (X, \tau^*) \rightarrow (X, \tau_v)$ be continuous.

Fix $x \in X$, $f(x) \in U \subseteq Y$, where U is open in Y.

Find a neighbourhood V of f(x) such that $f(x) \in V \subset cl \ V \subset U$, Using regular property of Y.

Since f: $(X, \tau^*) \rightarrow (X, \tau_v)$ is continuous, And $f^1(U)$, $f^1(V)$ are τ^* -open

Then $f^{-1}(cl\ V)$ is τ^* -closedAnd also we have

 $f^{1}(V) \subset cl f^{1}(V) \subset f^{1}(clV) \subset f^{1}(U)$. Then there exists $G \in \tau$, such that

$$f^{1}(V) \subset G \subset cl G \subset cl f^{1}(V) \subset f^{1}(clV) \subset f^{1}(U)$$
.

So $f(G) \subset U$ i.e given neighbourhood U of f(x), there is a τ neighbourhood G of X,

Such that $f(G) \subset U$. Hence $f: (X, \tau^*) \to (X, \tau_v)$ is continuous.

Corollary 2.12:

If (X, τ^*) is regular ,then τ and τ^* coincide.

Proof:

We know that $i_d:(X,\tau^*)\to(X,\tau^*)$ is continuous and hence $i_d:(X,\tau)\to(X,\tau^*)$ is also continuous and hence $\tau=\tau^*$

REFERENCES:

- [1] Hamlett, T.R and Jonkovic, C: New topologies from old via ideals, American. Math monthly, 97, 4 (1990), 295–310
- [2] MaryVictoriaFlorence.M.,Dr. Alagar R.:.Generalized **3-**g Closed sets with respect to fuzzy ideal.CiiT International Journal of fuzzy systems,Vol 3,No 9,Dec (2011)
- [3] MaryVictoriaFlorence.M.,Dr. Alagar R.:.On nearly fuzzy compact spaces with respect to fuzzy ideal.Bulletin of the Allahabad Mathematical Society,Vol.27,Part1,(2012),109-116
- [4] MaryVictoriaFlorence.M.,Dr. Alagar R.:.Characterizations of fuzzy closed compact spaces with respect to fuzzy ideal.IJGT:Vol.5,Nos.1-2,Jan-Dec (2012),pp.75-79;ISSN:0973-6571
- [5] Newcomb, R.L: Topologies which are compact Modulo an ideal, PhD dissertation, Univ. of cal at Santa Barbara, 1967.
- [6] J.A.Guguen,L-Fuzzy sets, J.Math.Anal.Appl.18 (1967), 145_174.